16 research outputs found

    Neonatal Outcome

    Get PDF
    Introduction: Henoch-Schönlein Purpura (HSP) is a systemic IgA-mediated small-vessel vasculitis. It is primarily a childhood disease, rarely described in pregnancy. Pregnant women with HSP are at risk for hypertensive and hemorrhagic complications. Due to the rarity of the condition during pregnancy, there is no consensus about the preferred course of treatment but concerns regarding optimal management are ongoing.Case presentation: We report the case of an 18 year-old primigravida, with a 3-year history of HSP, who had an uneventful pregnancy and term delivery with epidural anesthesia.Conclusion: Due to the systemic nature of HSP, multidisciplinary management of pregnant HSP patients should be warranted to prevent complications

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed

    Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) <it>in vivo</it> characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by <it>in vivo</it> T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle.</p> <p>Methods</p> <p>The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats.</p> <p>Results</p> <p>At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats.</p> <p>Conclusion</p> <p>The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an <it>in vivo</it> quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology.</p

    A genetic assessment of the English bulldog

    No full text
    BACKGROUND: This study examines genetic diversity among 102 registered English Bulldogs used for breeding based on maternal and paternal haplotypes, allele frequencies in 33 highly polymorphic short tandem repeat (STR) loci on 25 chromosomes, STR-linked dog leukocyte antigen (DLA) class I and II haplotypes, and the number and size of genome-wide runs of homozygosity (ROH) determined from high density SNP arrays. The objective was to assess whether the breed retains enough genetic diversity to correct the genotypic and phenotypic abnormalities associated with poor health, to allow for the elimination of deleterious recessive mutations, or to make further phenotypic changes in body structure or coat. An additional 37 English bulldogs presented to the UC Davis Veterinary Clinical Services for health problems were also genetically compared with the 102 registered dogs based on the perception that sickly English bulldogs are products of commercial breeders or puppy-mills and genetically different and inferior. RESULTS: Four paternal haplotypes, with one occurring in 93 % of dogs, were identified using six Y-short tandem repeat (STR) markers. Three major and two minor matrilines were identified by mitochondrial D-loop sequencing. Heterozygosity was determined from allele frequencies at genomic loci; the average number of alleles per locus was 6.45, with only 2.7 accounting for a majority of the diversity. However, observed and expected heterozygosity values were nearly identical, indicating that the population as a whole was in Hardy-Weinberg equilibrium (HWE). However, internal relatedness (IR) and adjusted IR (IRVD) values demonstrated that a number of individuals were the offspring of parents that were either more inbred or outbred than the population as a whole. The diversity of DLA class I and II haplotypes was low, with only 11 identified DLA class I and nine class II haplotypes. Forty one percent of the breed shared a single DLA class I and 62 % a single class II haplotype. Nineteen percent of the dogs were homozygous for the dominant DLA class I haplotype and 42 % for the dominant DLA class II haplotype. The extensive loss of genetic diversity is most likely the result of a small founder population and artificial genetic bottlenecks occurring in the past. The prominent phenotypic changes characteristic of the breed have also resulted in numerous large runs of homozygosity (ROH) throughout the genome compared to Standard Poodles, which were phenotypically more similar to indigenous-type dogs. CONCLUSIONS: English bulldogs have very low genetic diversity resulting from a small founder population and artificial genetic bottlenecks. Although some phenotypic and genotypic diversity still exists within the breed, whether it is sufficient to use reverse selection to improve health, select against simple recessive deleterious traits, and/or to accommodate further genotypic/phenotypic manipulations without further decreasing existing genetic diversity is questionable
    corecore