33 research outputs found

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    A spotlight on preschool: the influence of family factors on children's early literacy skills

    No full text
    RATIONALE: Phonological awareness, letter knowledge, oral language (including sentence recall) and rapid automatised naming are acknowledged within-child predictors of literacy development. Separate research has identified family factors including socio-economic status, parents' level of education and family history. However, both approaches have left unexplained significant amounts of variance in literacy outcomes. This longitudinal study sought to improve prospective classification accuracy for young children at risk of literacy failure by adding two new family measures (parents' phonological awareness and parents' perceived self-efficacy), and then combining the within-child and family factors. METHOD: Pre-literacy skills were measured in 102 four year olds (46 girls and 56 boys) at the beginning of Preschool, and then at the beginning and end of Kindergarten, when rapid automatised naming was also measured. Family factors data were collected at the beginning of Preschool, and children's literacy outcomes were measured at the end of Year 1 (age 6-7 years). RESULTS: Children from high-risk backgrounds showed poorer literacy outcomes than low-risk students, though three family factors (school socio-economic status, parents' phonological awareness, and family history) typically accounted for less Year 1 variance than the within-child factors. Combining these family factors with the end of Kindergarten within-child factors provided the most accurate classification (i.e., sensitivity = .85; specificity = .90; overall correct = .88). IMPLICATIONS: Our approach would identify at-risk children for intervention before they began to fail. Moreover, it would be cost-effective because although few at-risk children would be missed, allocation of unnecessary educational resources would be minimised
    corecore