73 research outputs found

    Transmission Dynamics of Methicillin-Resistant Staphylococcus aureus in a Medical Intensive Care Unit in India

    Get PDF
    Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a global pathogen and an important but seldom investigated cause of morbidity and mortality in lower and middle-income countries where it can place a major burden on limited resources. Quantifying nosocomial transmission in resource-poor settings is difficult because molecular typing methods are prohibitively expensive. Mechanistic statistical models can overcome this problem with minimal cost. We analyse the transmission dynamics of MRSA in a hospital in south India using one such approach and provide conservative estimates of the organism's economic burden. Methods and Findings: Fifty months of MRSA infection data were collected retrospectively from a Medical Intensive Care Unit (MICU) in a tertiary hospital in Vellore, south India. Data were analysed using a previously described structured hidden Markov model. Seventy-two patients developed MRSA infections and, of these, 49 (68%) died in the MICU. We estimated that 4.2% (95%CI 1.0, 19.0) of patients were MRSA-positive when admitted, that there were 0.39 MRSA infections per colonized patient month (0.06, 0.73), and that the ward-level reproduction number for MRSA was 0.42 (0.08, 2.04). Anti-MRSA antibiotic treatment costs alone averaged $124/patient, over three times the monthly income of more than 40% of the Indian population. Conclusions: Our analysis of routine data provides the first estimate of the nosocomial transmission potential of MRSA in India. The high levels of transmission estimated underline the need for cost-effective interventions to reduce MRSA transmission in hospital settings in low and middle income countries. © 2011 Christopher et al

    Enhanced susceptibility to infections in a diabetic wound healing model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wound infection is a common complication in diabetic patients. The progressive spread of infections and development of drug-resistant strains underline the need for further insights into bacterial behavior in the host in order to develop new therapeutic strategies. The aim of our study was to develop a large animal model suitable for monitoring the development and effect of bacterial infections in diabetic wounds.</p> <p>Methods</p> <p>Fourteen excisional wounds were created on the dorsum of diabetic and non-diabetic Yorkshire pigs and sealed with polyurethane chambers. Wounds were either inoculated with 2 Ă— 10<sup>8 </sup>Colony-Forming Units (CFU) of <it>Staphylococcus aureus </it>or injected with 0.9% sterile saline. Blood glucose was monitored daily, and wound fluid was collected for bacterial quantification and measurement of glucose concentration. Tissue biopsies for microbiological and histological analysis were performed at days 4, 8, and 12. Wounds were assessed for reepithelialization and wound contraction.</p> <p>Results</p> <p>Diabetic wounds showed a sustained significant infection (>10<sup>5 </sup>CFU/g tissue) compared to non-diabetic wounds (p < 0.05) over the whole time course of the experiment. <it>S. aureus</it>-inoculated diabetic wounds showed tissue infection with up to 8 Ă— 10<sup>7 </sup>CFU/g wound tissue. Non-diabetic wounds showed high bacterial counts at day 4 followed by a decrease and no apparent infection at day 12. Epidermal healing in <it>S. aureus</it>-inoculated diabetic wounds showed a significant delay compared with non-inoculated diabetic wounds (59% versus 84%; p < 0.05) and were highly significant compared with healing in non-diabetic wounds (97%; p < 0.001).</p> <p>Conclusion</p> <p>Diabetic wounds developed significantly more sustained infection than non-diabetic wounds. <it>S. aureus </it>inoculation leads to invasive infection and significant wound healing delay and promotes invasive co-infection with endogenous bacteria. This novel wound healing model provides the opportunity to closely assess infections during diabetic wound healing and to monitor the effect of therapeutical agents <it>in vivo</it>.</p
    • …
    corecore