324 research outputs found

    Where are you from, stranger? The enigmatic biogeography of North African pond turtles (Emys orbicularis) .

    Get PDF
    Abstract The European pond turtle (Emys orbicularis) is a Nearctic element in the African fauna and thought to have invaded North Africa from the Iberian Peninsula. All North African populations are currently identified with the subspecies E. o. occidentalis. However, a nearly range-wide sampling in North Africa used for analyses of mitochondrial and microsatellite DNA provides evidence that only Moroccan populations belong to this taxon, while eastern Algerian and Tunisian pond turtles represent an undescribed distinct subspecies. These two taxa are most closely related to E. o. galloitalica with a native distribution along the Mediterranean coast of northern Spain through southern France to western and southern Italy. This group is sister to a clade comprising several mitochondrial lineages and subspecies of E. orbicularis from Central and Eastern Europe plus Asia, and the successive sisters are E. o. hellenica and E. trinacris. Our results suggest that E. orbicularis has been present in North Africa longer than on the Iberian Peninsula and that after an initial invasion of North Africa by pond turtles from an unknown European source region, there was a phase of diversification in North Africa, followed by a later re-invasion of Europe by one of the African lineages. The differentiation of pond turtles in North Africa parallels a general phylogeographic paradigm in amphibians and reptiles, with deeply divergent lineages in the western and eastern Maghreb. Acknowledging their genetic similarity, we propose to synonymize the previously recognized Iberian subspecies E. o. fritzjuergenobsti with E. o. occidentalis sensu stricto. The seriously imperiled Moroccan populations of E. o. occidentalis represent two Management Units different in mitochondrial haplotypes and microsatellite markers. The conservation status of eastern Algerian pond turtles is unclear, while Tunisian populations are endangered. Considering that Algerian and Tunisian pond turtles represent an endemic taxon, their situation throughout the historical range should be surveyed to establish a basis for conservation measures

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    Chronic non-specific low back pain - sub-groups or a single mechanism?

    Get PDF
    Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions for chronic non-specific low back pain indicate limited effectiveness for most commonly applied interventions and approaches. Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of effectiveness is at odds with their clinical experience of managing patients with back pain. A common explanation for this discrepancy is the perceived heterogeneity of patients with chronic non-specific low back pain. It is felt that the effects of treatment may be diluted by the application of a single intervention to a complex, heterogeneous group with diverse treatment needs. This argument presupposes that current treatment is effective when applied to the correct patient. An alternative perspective is that the clinical trials are correct and current treatments have limited efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important that the sub-grouping paradigm is closely examined. This paper argues that there are numerous problems with the sub-grouping approach and that it may not be an important reason for the disappointing results of clinical trials. We propose instead that current treatment may be ineffective because it has been misdirected. Recent evidence that demonstrates changes within the brain in chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of cortical reorganisation and degeneration. This perspective offers interesting insights into the chronic low back pain experience and suggests alternative models of intervention. Summary: The disappointing results of clinical research are commonly explained by the failure of researchers to adequately attend to sub-grouping of the chronic non-specific low back pain population. Alternatively, current approaches may be ineffective and clinicians and researchers may need to radically rethink the nature of the problem and how it should best be managed

    Characterization of Clinically-Attenuated Burkholderia mallei by Whole Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists

    Get PDF
    is an understudied biothreat agent responsible for glanders which can be lethal in humans and animals. Research with this pathogen has been hampered in part by constraints of Select Agent regulations for safety reasons. Whole genomic sequencing (WGS) is an apt approach to characterize newly discovered or poorly understood microbial pathogens. genome. Therefore, the strain by itself is unlikely to revert naturally to its virulent phenotype. There were other genes present in one strain and not the other and vice-versa. was both avirulent in the natural host ponies, and did not possess T3SS associated genes may be fortuitous to advance biodefense research. The deleted virulence-essential T3SS is not likely to be re-acquired naturally. These findings may provide a basis for exclusion of SAVP1 from the Select Agent regulation or at least discussion of what else would be required for exclusion. This exclusion could accelerate research by investigators not possessing BSL-3 facilities and facilitate the production of reagents such as antibodies without the restraints of Select Agent regulation

    Inter-rater reliability of three standardized functional tests in patients with low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Of all patients with low back pain, 85% are diagnosed as "non-specific lumbar pain". Lumbar instability has been described as one specific diagnosis which several authors have described as delayed muscular responses, impaired postural control as well as impaired muscular coordination among these patients. This has mostly been measured and evaluated in a laboratory setting. There are few standardized and evaluated functional tests, examining functional muscular coordination which are also applicable in the non-laboratory setting. In ordinary clinical work, tests of functional muscular coordination should be easy to apply. The aim of this present study was to therefore standardize and examine the inter-rater reliability of three functional tests of muscular functional coordination of the lumbar spine in patients with low back pain.</p> <p>Methods</p> <p>Nineteen consecutive individuals, ten men and nine women were included. (Mean age 42 years, SD ± 12 yrs). Two independent examiners assessed three tests: "single limb stance", "sitting on a Bobath ball with one leg lifted" and "unilateral pelvic lift" on the same occasion. The standardization procedure took altered positions of the spine or pelvis and compensatory movements of the free extremities into account. The inter-rater reliability was analyzed by Cohen's kappa coefficient (κ) and by percentage agreement.</p> <p>Results</p> <p>The inter-rater reliability for the right and the left leg respectively was: for the single limb stance very good (κ: 0.88–1.0), for sitting on a Bobath ball good (κ: 0.79) and very good (κ: 0.88) and for the unilateral pelvic lift: good (κ: 0.61) and moderate (κ: 0.47).</p> <p>Conclusion</p> <p>The present study showed good to very good inter-rater reliability for two standardized tests, that is, the single-limb stance and sitting on a Bobath-ball with one leg lifted. Inter-rater reliability for the unilateral pelvic lift test was moderate to good. Validation of the tests in their ability to evaluate lumbar stability is required.</p

    High Natality Rates of Endangered Steller Sea Lions in Kenai Fjords, Alaska and Perceptions of Population Status in the Gulf of Alaska

    Get PDF
    Steller sea lions experienced a dramatic population collapse of more than 80% in the late 1970s through the 1990s across their western range in Alaska. One of several competing hypotheses about the cause holds that reduced female reproductive rates (natality) substantively contributed to the decline and continue to limit recovery in the Gulf of Alaska despite the fact that there have been very few attempts to directly measure natality in this species. We conducted a longitudinal study of natality among individual Steller sea lions (n = 151) at a rookery and nearby haulouts in Kenai Fjords, Gulf of Alaska during 2003–2009. Multi-state models were built and tested in Program MARK to estimate survival, resighting, and state transition probabilities dependent on whether or not a female gave birth in the previous year. The models that most closely fit the data suggested that females which gave birth had a higher probability of surviving and giving birth in the following year compared to females that did not give birth, indicating some females are more fit than others. Natality, estimated at 69%, was similar to natality for Steller sea lions in the Gulf of Alaska prior to their decline (67%) and much greater than the published estimate for the 2000s (43%) which was hypothesized from an inferential population dynamic model. Reasons for the disparity are discussed, and could be resolved by additional longitudinal estimates of natality at this and other rookeries over changing ocean climate regimes. Such estimates would provide an appropriate assessment of a key parameter of population dynamics in this endangered species which has heretofore been lacking. Without support for depressed natality as the explanation for a lack of recovery of Steller sea lions in the Gulf of Alaska, alternative hypotheses must be more seriously considered

    Predation on an Upper Trophic Marine Predator, the Steller Sea Lion: Evaluating High Juvenile Mortality in a Density Dependent Conceptual Framework

    Get PDF
    The endangered western stock of the Steller sea lion (Eumetopias jubatus) – the largest of the eared seals – has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates

    Formation of Mobile Chromatin-Associated Nuclear Foci Containing HIV-1 Vpr and VPRBP Is Critical for the Induction of G2 Cell Cycle Arrest

    Get PDF
    HIV-1 Viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/stress checkpoint. Recently, we and several other groups showed that Vpr performs this activity by recruiting the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. While recruitment of this E3 ubiquitin ligase complex has been shown to be required for G2 arrest, the subcellular compartment where this complex forms and functionally acts is unknown. Herein, using immunofluorescence and confocal microscopy, we show that Vpr forms nuclear foci in several cell types including HeLa cells and primary CD4+ T-lymphocytes. These nuclear foci contain VPRBP and partially overlap with DNA repair foci components such as γ-H2AX, 53BP1 and RPA32. While treatment with the non-specific ATR inhibitor caffeine or depletion of VPRBP by siRNA did not inhibit formation of Vpr nuclear foci, mutations in the C-terminal domain of Vpr and cytoplasmic sequestration of Vpr by overexpression of Gag-Pol resulted in impaired formation of these nuclear structures and defective G2 arrest. Consistently, we observed that G2 arrest-competent sooty mangabey Vpr could form these foci but not its G2 arrest-defective paralog Vpx, suggesting that formation of Vpr nuclear foci represents a critical early event in the induction of G2 arrest. Indeed, we found that Vpr could associate to chromatin via its C-terminal domain and that it could form a complex with VPRBP on chromatin. Finally, analysis of Vpr nuclear foci by time-lapse microscopy showed that they were highly mobile and stable structures. Overall, our results suggest that Vpr recruits the DDB1-CUL4A (VPRBP) E3 ligase to these nuclear foci and uses these mobile structures to target a chromatin-bound cellular substrate for ubiquitination in order to induce DNA damage/replication stress, ultimately leading to ATR activation and G2 cell cycle arrest

    Differential immunity as a factor influencing mussel hybrid zone structure

    Get PDF
    Interspecific hybridisation can alter fitness-related traits, including the response to pathogens, yet immunity is rarely investigated as a potential driver of hybrid zone dynamics, particularly in invertebrates. We investigated the immune response of mussels from a sympatric population at Croyde Bay, within the hybrid zone of Mytilus edulis and Mytilus galloprovincialis in Southwest England. The site is characterised by size-dependent variation in genotype frequencies, with a higher frequency of M. galloprovincialis alleles in large mussels, largely attributed to selective mortality in favour of the M. galloprovincialis genotype. To determine if differences in immune response may contribute to this size-dependent variation in genotype frequencies, we assessed the two pure species and their hybrids in their phagocytic abilities when subject to immune challenge as a measure of immunocompetence and measured the metabolic cost of mounting an antigen-stimulated immune response. Mussels identified as M. galloprovincialis had a greater immunocompetence response at a lower metabolic cost compared to mussels identified as M. edulis. Mussels identified as hybrids had intermediate values for both parameters, providing no evidence for heterosis but suggesting that increased susceptibility compared to M. galloprovincialis may be attributed to the M. edulis genotype. The results indicate phenotypic differences in the face of pathogenic infection, which may be a contributing factor to the differential mortality in favour of M. galloprovincialis, and the size-dependent variation in genotype frequencies associated with this contact zone. We propose that immunity may contribute to European mussel hybrid zone dynamics
    corecore