2,384 research outputs found

    Cosmological Adaptive Mesh Refinement

    Get PDF
    We describe a grid-based numerical method for 3D hydrodynamic cosmological simulations which is adaptive in space and time and combines the best features of higher order--accurate Godunov schemes for Eulerian hydrodynamics with adaptive particle--mesh methods for collisionless particles. The basis for our method is the structured adaptive mesh refinement (AMR) algorithm of Berger & Collela (1989), which we have extended to cosmological hydro + N-body simulations. The resulting multiscale hybrid method is a powerful alternative to particle-based methods in current use. The choices we have made in constructing this algorithm are discussed, and its performance on the Zeldovich pancake test problem is given. We present a sample application of our method to the problem of first structure formation. We have achieved a spatial dynamic range Lbox/Δx>250,000L_{box}/\Delta x > 250,000 in a 3D multispecies gas + dark matter calculation, which is sufficient to resolve the formation of primordial protostellar cloud cores starting from linear matter fluctuations in an expanding FRW universe.Comment: 14 pages, 3 figures (incl. one large color PS) to appear in "Numerical Astrophysics 1998", eds. S. Miyama & K. Tomisaka, Tokyo, March 10-13, 199

    R-parity violating resonant stop production at the Large Hadron Collider

    Full text link
    We have investigated the resonant production of a stop at the Large Hadron Collider, driven by baryon number violating interactions in supersymmetry. We work in the framework of minimal supergravity models with the lightest neutralino being the lightest supersymmetric particle which decays within the detector. We look at various dilepton and trilepton final states, with or without b-tags. A detailed background simulation is performed, and all possible decay modes of the lighter stop are taken into account. We find that higher stop masses are sometimes easier to probe, through the decay of the stop into the third or fourth neutralino and their subsequent cascades. We also comment on the detectability of such signals during the 7 TeV run, where, as expected, only relatively light stops can be probed. Our conclusion is that the resonant process may be probed, at both 10 and 14 TeV, with the R-parity violating coupling {\lambda}"_{312} as low as 0.05, for a stop mass of about 1 TeV. The possibility of distinguishing between resonant stop production and pair-production is also discussed.Comment: 20 pages, 4 figures, 6 tables; Version accepted by JHE

    Evidence for reversible control of magnetization in a ferromagnetic material via spin-orbit magnetic field

    Full text link
    Conventional computer electronics creates a dichotomy between how information is processed and how it is stored. Silicon chips process information by controlling the flow of charge through a network of logic gates. This information is then stored, most commonly, by encoding it in the orientation of magnetic domains of a computer hard disk. The key obstacle to a more intimate integration of magnetic materials into devices and circuit processing information is a lack of efficient means to control their magnetization. This is usually achieved with an external magnetic field or by the injection of spin-polarized currents. The latter can be significantly enhanced in materials whose ferromagnetic properties are mediated by charge carriers. Among these materials, conductors lacking spatial inversion symmetry couple charge currents to spin by intrinsic spin-orbit (SO) interactions, inducing nonequilibrium spin polarization tunable by local electric fields. Here we show that magnetization of a ferromagnet can be reversibly manipulated by the SO-induced polarization of carrier spins generated by unpolarized currents. Specifically, we demonstrate domain rotation and hysteretic switching of magnetization between two orthogonal easy axes in a model ferromagnetic semiconductor.Comment: 10 pages including supplemental materia

    Higgs boson enhancement effects on squark-pair production at the LHC

    Full text link
    We study the Higgs boson effects on third-generation squark-pair production in proton-proton collision at the CERN Large Hadron Collider (LHC), including \Stop \Stop^*, \Stop\Sbot^*, and \Sbot \Sbot^*. We found that substantial enhancement can be obtained through s-channel exchanges of Higgs bosons at large tanβ\tan\beta, at which the enhancement mainly comes from bbˉb\bar b, bcˉb\bar c, and cbˉc\bar b initial states. We compute the complete set of electroweak (EW) contributions to all production channels. This completes previous computations in the literature. We found that the EW contributions can be significant and can reach up to 25% in more general scenarios and at the resonance of the heavy Higgs boson. The size of Higgs enhancement is comparable or even higher than the PDF uncertainties and so must be included in any reliable analysis. A full analytical computation of all the EW contributions is presented.Comment: 23 pages, 7 figures, 1 tabl

    Constraints on supersymmetry with light third family from LHC data

    Full text link
    We present a re-interpretation of the recent ATLAS limits on supersymmetry in channels with jets (with and without b-tags) and missing energy, in the context of light third family squarks, while the first two squark families are inaccessible at the 7 TeV run of the Large Hadron Collider (LHC). In contrast to interpretations in terms of the high-scale based constrained minimal supersymmetric standard model (CMSSM), we primarily use the low-scale parametrisation of the phenomenological MSSM (pMSSM), and translate the limits in terms of physical masses of the third family squarks. Side by side, we also investigate the limits in terms of high-scale scalar non-universality, both with and without low-mass sleptons. Our conclusion is that the limits based on 0-lepton channels are not altered by the mass-scale of sleptons, and can be considered more or less model-independent.Comment: 20 pages, 8 figures, 2 tables. Version published in JHE

    Giant QCD K-factors beyond NLO

    Get PDF
    Hadronic observables in Z+jet events can be subject to large NLO corrections at TeV scales, with K-factors that even reach values of order 50 in some cases. We develop a method, LoopSim, by which approximate NNLO predictions can be obtained for such observables, supplementing NLO Z+jet and NLO Z+2-jet results with a unitarity-based approximation for missing higher loop terms. We first test the method against known NNLO results for Drell-Yan lepton pt spectra. We then show our approximate NNLO results for the Z+jet observables. Finally we examine whether the LoopSim method can provide useful information even in cases without giant K-factors, with results for observables in dijet events that can be compared to early LHC data.Comment: 38 pages, 13 figures; v2 includes additional reference

    Multiple Parton Interactions in Z+jets production at the LHC. A comparison of factorized and non--factorized double parton distribution functions

    Get PDF
    We examine the contribution of Multiple Parton Interactions to Z+n-jets production at the LHC, n=2,3,4, where the Z boson is assumed to decay leptonically. We compare the results obtained with the correlated GS09 double parton distribution function with those obtained with two instances of fully factorized single parton distribution functions: MSTW2008LO and CTEQ6LO. It appears quite feasible to measure the MPI contribution to Z+2/3/4 jets already in the first phase of the LHC with a total luminosity of one inverse femtobarn at 7 TeV. If as expected the trigger threshold for single photons is around 80 GeV, Z+2-jets production may well turn out to be more easily observable than the gamma+3-jets channel. The MPI cross section is dominated by relatively soft events with two jets balancing in transverse momentum.Comment: 15 pages, 3 plot

    Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC

    Get PDF
    Higgs boson production in association with a hard central photon and two forward tagging jets is expected to provide valuable information on Higgs boson couplings in a range where it is difficult to disentangle weak-boson fusion processes from large QCD backgrounds. We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak-boson fusion at a hadron collider in the form of a flexible parton-level Monte Carlo program. The QCD corrections to integrated cross sections are found to be small for experimentally relevant selection cuts, while the shape of kinematic distributions can be distorted by up to 20% in some regions of phase space. Residual scale uncertainties at next-to-leading order are at the few-percent level.Comment: 17 pages, 7 figures, 1 tabl

    Goldstone Bosons in Effective Theories with Spontaneously Broken Flavour Symmetry

    Full text link
    The Flavour Symmetry of the Standard Model (SM) gauge sector is broken by the fermion Yukawa couplings. Promoting the Yukawa matrices to scalar spurion fields, one can break the flavour symmetry spontaneously by giving appropriate vacuum expectation values (VEVs) to the spurion fields, and one encounters Goldstone modes for every broken flavour symmetry generator. In this paper, we point out various aspects related to the possible dynamical interpretation of the Goldstone bosons: (i) In an effective-theory framework with local flavour symmetry, the Goldstone fields represent the longitudinal modes for massive gauge bosons. The spectrum of the latter follows the sequence of flavour-symmetry breaking related to the hierarchies in Yukawa couplings and flavour mixing angles. (ii) Gauge anomalies can be consistently treated by adding higher-dimensional operators. (iii) Leaving the U(1) factors of the flavour symmetry group as global symmetries, the respective Goldstone modes behave as axions which can be used to resolve the strong CP problem by a modified Peccei-Quinn mechanism. (iv) The dynamical picture of flavour symmetry breaking implies new sources of flavour-changing neutral currents, which arise from integrating out heavy scalar spurion fields and heavy gauge bosons. The coefficients of the effective operators follow the minimal-flavour violation principle.Comment: 27 pages, abstract and introduction extended, more detailed discussion of heavy gauge boson spectrum and auxiliary heavy fermions, outline restructured. Matches version to be published in JHE
    corecore