86 research outputs found

    Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis

    Get PDF
    Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the world's most devastating diseases. The first vaccine the majority of infants born in Africa receive is Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a prevention against TB. BCG protects against disseminated disease in the first 10 years of life, but provides a variable protection against pulmonary TB and enhancing boost delivered by recombinant modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of M. tuberculosis is currently in phase IIb evaluation in African neonates. If the newborn's mother is positive for human immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring HIV-1 through breastfeeding. We suggested that a vaccination consisting of recombinant BCG expressing HIV-1 immunogen administered at birth followed by a boost with rMVA sharing the same immunogen could serve as a strategy for prevention of mother-to-child transmission of HIV-1 and rMVA expressing an African HIV-1-derived immunogen HIVA is currently in phase I trials in African neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1 and TB consisting of BCG.HIVA administered at birth followed by a boost with MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed, in which the transgene transcription is driven by either modified H5 or short synthetic promoters, respectively, and tested for immunogenicity alone and in combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced robust T cell responses to both HIV-1 and M. tuberculosis. Therefore, proof-of-principle for a dual anti-HIV-1/M. tuberculosis infant vaccine platform is established. Induction of immune responses against these pathogens soon after birth is highly desirable and may provide a basis for lifetime protection maintained by boosts later in life

    Older women, breast cancer, and social support

    Get PDF
    One in ten women over the age of 65 will develop breast cancer. Despite this high incidence of breast cancer among older women, social support for them is often inadequate. This paper describes a qualitative study of the impact of a breast cancer diagnosis on older women from racially/ethnically diverse populations and their subsequent need for social support. Forty-seven older African American, Asian American, Caucasian and Latina women between the ages of 65 to 83 participated in a larger study examining the impact of breast cancer on women from racially/ethnically diverse populations and the meaning and nature of social support. The women completed an in-depth qualitative interview on the psychosocial impact of breast cancer and the meaning and nature of social support. The results indicate that there are variations in reactions to a breast cancer diagnosis among older women, and that these reactions impact their experiences with seeking social support at diagnosis and during treatment. Respondents were concerned about their aging bodies, potential dependency on others, and loss of autonomy. At the same time, the severity of cancer treatment and existing co-morbidities often meant they needed to learn to receive support, and to reach out if they had no support. The implications of these findings underscore the older cancer patient’s need to strengthen her supportive networks at the time of diagnosis, during treatment, and post-treatment

    Priming with a Recombinant Pantothenate Auxotroph of Mycobacterium bovis BCG and Boosting with MVA Elicits HIV-1 Gag Specific CD8+ T Cells

    Get PDF
    A safe and effective HIV vaccine is required to significantly reduce the number of people becoming infected with HIV each year. In this study wild type Mycobacterium bovis BCG Pasteur and an attenuated pantothenate auxotroph strain (BCGΔpanCD) that is safe in SCID mice, have been compared as vaccine vectors for HIV-1 subtype C Gag. Genetically stable vaccines BCG[pHS400] (BCG-Gag) and BCGΔpanCD[pHS400] (BCGpan-Gag) were generated using the Pasteur strain of BCG, and a panothenate auxotroph of Pasteur respectively. Stability was achieved by the use of a codon optimised gag gene and deletion of the hsp60-lysA promoter-gene cassette from the episomal vector pCB119. In this vector expression of gag is driven by the mtrA promoter and the Gag protein is fused to the Mycobacterium tuberculosis 19 kDa signal sequence. Both BCG-Gag and BCGpan-Gag primed the immune system of BALB/c mice for a boost with a recombinant modified vaccinia virus Ankara expressing Gag (MVA-Gag). After the boost high frequencies of predominantly Gag-specific CD8+ T cells were detected when BCGpan-Gag was the prime in contrast to induction of predominantly Gag-specific CD4+ T cells when priming with BCG-Gag. The differing Gag-specific T-cell phenotype elicited by the prime-boost regimens may be related to the reduced inflammation observed with the pantothenate auxotroph strain compared to the parent strain. These features make BCGpan-Gag a more desirable HIV vaccine candidate than BCG-Gag. Although no Gag-specific cells could be detected after vaccination of BALB/c mice with either recombinant BCG vaccine alone, BCGpan-Gag protected mice against a surrogate vaccinia virus challenge

    Interplanetary Dust

    No full text
    • …
    corecore