1,255 research outputs found

    BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis

    Get PDF
    Regulation of BubR1 is central to the control of APC/C activity. We have found that BubR1 forms a complex with PCAF and is acetylated at lysine 250. Using mass spectrometry and acetylated BubR1-specific antibodies, we have confirmed that BubR1 acetylation occurs at prometaphase. Importantly, BubR1 acetylation was required for checkpoint function, through the inhibition of ubiquitin-dependent BubR1 degradation. BubR1 degradation began before the onset of anaphase. It was noted that the pre-anaphase degradation was regulated by BubR1 acetylation. Degradation of an acetylation-mimetic form, BubR1–K250Q, was inhibited and chromosome segregation in cells expressing BubR1–K250Q was markedly delayed. By contrast, the acetylation-deficient mutant, BubR1–K250R, was unstable, and mitosis was accelerated in BubR1–K250R-expressing cells. Furthermore, we found that APC/C–Cdc20 was responsible for BubR1 degradation during mitosis. On the basis of our collective results, we propose that the acetylation status of BubR1 is a molecular switch that converts BubR1 from an inhibitor to a substrate of the APC/C complex, thus providing an efficient way to modulate APC/C activity and mitotic timing

    Spinor-Vector Duality in Heterotic String Orbifolds

    Get PDF
    The three generation heterotic-string models in the free fermionic formulation are among the most realistic string vacua constructed to date, which motivated their detailed investigation. The classification of free fermion heterotic string vacua has revealed a duality under the exchange of spinor and vector representations of the SO(10) GUT symmetry over the space of models. We demonstrate the existence of the spinor-vector duality using orbifold techniques, and elaborate on the relation of these vacua to free fermionic models.Comment: 20 pages. v2 minor corrections. Version to appear on JHEP. v3 misprints correcte

    Wavefunctions and the Point of E8 in F-theory

    Get PDF
    In F-theory GUTs interactions between fields are typically localised at points of enhanced symmetry in the internal dimensions implying that the coefficient of the associated operator can be studied using a local wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit a maximum symmetry enhancement at a point to E8, and in this case all the operators of the theory can be associated to the same point. We take initial steps towards the study of operators in such theories. We calculate wavefunctions and their overlaps around a general point of enhancement and establish constraints on the local form of the fluxes. We then apply the general results to a simple model at a point of E8 enhancement and calculate some example operators such as Yukawa couplings and dimension-five couplings that can lead to proton decay.Comment: 46 page

    Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria.

    Full text link
    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton

    Multiphysics simulation of a microfluidic perfusion chamber for brain slice physiology

    Get PDF
    Understanding and optimizing fluid flows through in vitro microfluidic perfusion systems is essential in mimicking in vivo conditions for biological research. In a previous study a microfluidic brain slice device (μBSD) was developed for microscale electrophysiology investigations. The device consisted of a standard perfusion chamber bonded to a polydimethylsiloxane (PDMS) microchannel substrate. Our objective in this study is to characterize the flows through the μBSD by using multiphysics simulations of injections into a pourous matrix to identify optimal spacing of ports. Three-dimensional computational fluid dynamic (CFD) simulations are performed with CFD-ACE + software to model, simulate, and assess the transport of soluble factors through the perfusion bath, the microchannels, and a material that mimics the porosity, permeability and tortuosity of brain tissue. Additionally, experimental soluble factor transport through a brain slice is predicted by and compared to simulated fluid flow in a volume that represents a porous matrix material. The computational results are validated with fluorescent dye experiments

    Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.</p> <p>Methods</p> <p>We adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.</p> <p>Results</p> <p>From meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10<sup>-10</sup>) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.</p> <p>Conclusions</p> <p>We show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples.</p

    Risk Factors For Recurrent Stroke After Coronary Artery Bypass Grafting

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Preventing stroke after coronary artery bypass grafting (CABG) remains a therapeutic goal, due in part to the lack of identifiable risk factors. The aim of this study, accordingly, was to identify risk factors in CABG patients with a previous history of stroke.</p> <p>Methods</p> <p>Patients with a history of stroke who underwent CABG at Beijing An Zhen hospital from January 2007 to July 2010 were selected (n = 430), and divided into two groups according to the occurrence of postoperative stroke. Pre-operative and post-operative data were retrospectively collected and analyzed by univariate and multivariate logistic regression analyses.</p> <p>Results</p> <p>Thirty-two patients (7.4%) suffered post-operative stroke. Univariate analysis identified several statistically significant risk factors in the post-operative stroke group, including pre-surgical left ventricular ejection fractions (LVEF) ≤50%, on-pump surgery, post-operative atrial fibrillation (AF), and hypotension. Multivariable analysis identified 4 independent risk factors for recurrent stroke: unstable angina (odds ratio (OR) = 2.95, 95% CI: 1.05-8.28), LVEF ≤50% (OR = 2.77, 95% CI: 1.23-6.27), AF (OR = 4.69, 95% CI: 1.89-11.63), and hypotension (OR = 2.55, 95% CI: 1.07-6.04).</p> <p>Conclusion</p> <p>Unstable angina, LVEF ≤50%, post-operative AF, and post-operative hypotension are independent risk factors of recurrent stroke in CABG patients with a previous history of stroke.</p

    Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids

    Get PDF
    An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concentration, an increment was about 60% in the re-ultrasonication nanofluids in comparison with the base fluid. The microstructure analysis indicates that a higher nanoparticle aggregation had been observed in the nanofluids before re-ultrasonication

    Newly uncovered physics of MHD instabilities using 2-D electron cyclotron emission imaging system in toroidal plasmas

    Get PDF
    Validation of physics models using the newly uncovered physics with a 2-D electron cyclotron emission imaging (ECEi) system for magnetic fusion plasmas has either enhanced the confidence or substantially improved the modeling capability. The discarded &quot;full reconnection model&quot; in sawtooth instability is vindicated and established that symmetry and magnetic shear of the 1/1 kink mode are critical parameters in sawtooth instability. For the 2/1 instability, it is demonstrated that the 2-D data can determine critical physics parameters with a high confidence and the measured anisotropic distribution of the turbulence and its flow in presence of the 2/1 island is validated by the modelled potential and gyro-kinetic calculation. The validation process of the measured reversed-shear Alfveneigenmode (RSAE) structures has improved deficiencies of prior models. The 2-D images of internal structure of the ELMs and turbulence induced by the resonant magnetic perturbation (RMP) have provided an opportunity to establish firm physics basis of the ELM instability and role of RMPs. The importance of symmetry in determining the reconnection time scale and role of magnetic shear of the 1/1 kink mode in sawtooth instability may be relevant to the underlying physics of the violent kink instability of the filament ropes in a solar flare
    corecore