32 research outputs found

    Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis

    Get PDF
    Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. © 2009 Piuri et al

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    Complete Genome Sequences of Microbacterium

    No full text

    L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria

    No full text
    Recombinant bacteriophages provide efficient delivery systems for introducing reporter genes into specific bacterial hosts. We have constructed mycobacteriophage L5 recombinants carrying the firefly luciferase gene inserted into the tRNA region of the phage genome. Infection of Mycobacterium smegmatis by these phages results in expression of the luciferase gene and light emission. Fortuitously, the luciferase gene is expressed continuously in lysogens surviving infection. Synthesis of luciferase from a mycobacterial promoter created by cloning enables the detection of extremely small numbers of M. smegmatis cells. These reporter phages can be used to discriminate between drug‐sensitive and drug‐resistant strains of M. smegmatis, and may provide tools for the rapid identification and classification of antimycobacterial agents. Copyright © 1995, Wiley Blackwell. All rights reserve

    Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria

    No full text
    Diseases caused by Mycobacterium tuberculosis, M. leprae and M. avium, cause significant morbidity and mortality worldwide. Effective treatments require that the organisms be speciated and that drug susceptibilities for the causative organisms be characterized. Reporter phage technology has been developed as a rapid and convenient method for identifying mycobacterial species and evaluating drug resistance. In this report we describe the construction of luciferase reporter phages from mycobacterio-phage D29 DNA. Shuttle phasmids were first constructed with D29 in order to identify non-essential regions of the D29 genomes and to introduce unique cloning sites within that region. Using this approach, we observed that all of the D29 shuttle phasmids had the cosmid vector localized to one area of the phage genome near one cohesive end. These shuttle phasmids had been constructed with a cosmid that could be readily excised from the D29 genome with different sets of restriction enzymes. Luciferase reporter phages were made by substituting the luciferase cassette for the cosmid vector. Recombinant phages with the luciferase cassette fall into two groups. One group produced light and had the expression cassette oriented with the promoter directing transcription away from the cohesive end. In contrast, the other group had the expression cassette in the opposite orientation and failed to produce light during lytic infection, but did produce light in L5 lysogens which are known to repress D29 promoters. These results suggest that a phage promoter of the D29 phage can occlude the expression of a promoter introduced into this region. D29 luciferase reporter phages are capable of detecting low numbers of L5 lysogens like L5 luciferase phages. However, unlike L5 luciferase phages, D29 luciferase phages can readily infect M. tuberculosis and M. bovis BCG, demonstrating that these phages can be used to evaluate drug susceptibilities of many types of mycobacteria

    Genome structure of mycobacteriophage D29: Implications for phage evolution

    No full text
    Mycobacteriophage D29 is a lytic phage that infects both fast and slow-growing mycobacterial species. The complete genome sequence of D29 reveals that it is a close relative of the temperate mycobacteriophage L5, whose sequence has been described previously. The overall organization of the D29 genome is similar to that of L5, although a 3.6 kb deletion removing the repressor gene accounts for the inability of D29 to form lysogens. Comparison of the two genomes shows that they are punctuated by a large number of insertions, deletions, and substitutions of genes, consistent with the genetic mosaicism of lambdoid phages

    What is the best depth-map compression for Depth Image Based Rendering?

    No full text
    Many of the latest smart phones and tablets come with integrated depth sensors, that make depth-maps freely available, thus enabling new forms of applications like rendering from different view points. However, efficient compression exploiting the characteristics of depth-maps as well as the requirements of these new applications is still an open issue. In this paper, we evaluate different depth-map compression algorithms, with a focus on tree-based methods and view projection as application. The contributions of this paper are the following: 1. extensions of existing geometric compression trees, 2. a comparison of a number of different trees, 3. a comparison of them to a state-of-the-art video coder, 4. an evaluation using ground-truth data that considers both depth-maps and predicted frames with arbitrary camera translation and rotation. Despite our best efforts, and contrary to earlier results, current video depth-map compression outperforms tree-based methods in most cases. The reason for this is likely that previous evaluations focused on low-quality, low-resolution depth maps, while high-resolution depth (as needed in the DIBR setting) has been ignored up until now. We also demonstrate that PSNR on depth-maps is not always a good measure of their utility.VR Project: Learnable Camera Motion Models, 2014-5928</p

    Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages

    No full text
    Effective chemotherapy of tuberculosis requires rapid assessment of drug sensitivity because of the emergence of multidrug-resistant Mycobacterium tuberculosis. Drug susceptibility was assessed by a simple method based on the efficient production of photons by viable mycobacteria infected with specific reporter phages expressing the firefly luciferase gene. Light production was dependent on phage infection, expression of the luciferase gene, and the level of cellular adenosine triphosphate. Signals could be detected within minutes after infection of virulent M. tuberculosis with reporter phages. Culture of conventional strains with antituberculosis drugs, including isoniazid or rifampicin, resulted in extinction of light production. In contrast, light signals after luciferase reporter phage infection of drug-resistant strains continued to be produced. Luciferase reporter phages may help to reduce the time required for establishing antibiotic sensitivity of M. tuberculosis strains from weeks to days and to accelerate screening for new antituberculosis drugs
    corecore