2,327 research outputs found

    Perforation resistance of aluminum/polyethylene sandwich structure

    Get PDF
    Β© 2016 Elsevier Ltd. Ballistic tests were performed on two types of polyethylene core sandwich structures (AA6082/LDPE/AA6082 and AA6082/UHMWPE/AA6082) to investigate their perforation resistance. Bulging and dishing deformation of layered plates were compared under low-velocity impact by hemispherical-nosed projectiles. Different impact failure mechanisms leading to perforation were revealed for laminates composed of a pair of aluminum alloy face sheets separated by a polyethylene interlayer. Using the finite element code Abaqus/Explicit, the perforation behavior and distribution of energy dissipation of each layer during penetration were simulated and analysed. The deformation resistance and anti-penetration properties of polyethylene core sandwich structures were compared with those of monolithic AA6082-T6 plates that had the same areal density. Although the polyethylene interlayer enlarged the plastic deformation zone of the back face, the polyethylene core sandwich structure was a little less effective than the monolithic Al alloy target at resisting hemispherical-nosed projectile impact.The authors gratefully acknowledge the Foundation of State Key Laboratory of Explosion Science and Technology of China under Grant No. KFJJ13-1Z, and Natural Science Foundation of China under Grant No. 11102023, 11172071

    Characterization of H3N2 influenza viruses isolated from pigs in southern China

    Get PDF
    Poster Presentations: Animal Influenza EcologyHuman-like H3N2 influenza viruses have repeatedly transmitted to domestic pigs in different regions of the world, but it is still not certain whether any of those variants have become established in pig populations. The detection of different subtypes of avian influenza viruses from pigs makes it an ideal candidate for the genesis of a possible reassortant virus with both human and avian gene segments. However, whether pigs could act as a β€œmixing vessel” for a possible pandemic virus remains unanswered. Long-term influenza surveillance in pigs in southern China revealed that H3N2 influenza viruses were regularly detected from domestic pigs from 1998 to 2003. Antigenic analysis of representative strains revealed that two distinguishable groups of H3N2 influenza viruses were present in pigs during this period: a contemporary human-like viruses (represented by Sydney/5/97), and Port Chalmers/1/73-like (PC-like) viruses. Phylogenetic analysis of the representative strains confirmed those two groups. In general, the PC-like viruses were most closely related to those H3N2 reassortants recognized from European pigs since the mid-1980s, while the remaining isolates were most closely related to those contemporary human H3N2 viruses. It is interesting to note that one PC-like isolate contained a classical swine H1N1-like NP gene, Sw/HK/1197/02, suggesting that after introduction to pigs in southern China the European swine H3N2 virus further reassorted with local swine virus. The contemporary humanlike H3N2 viruses isolated from pig appeared to have resulted from repeated introduction from humans to pigs. Interestingly, one isolate (Sw/HK/NS1128/03) clustered with those human isolates detected in the early 1990s. These findings suggesting that some recent human H3N2 variants may be maintained long-term in pig populations in southern China. The present study provides updated information on the role of pigs in the interspecies transmission and genetic reassortment of influenza viruses in this region.postprin

    Determinants of the voltage dependence of G protein modulation within calcium channel Ξ² subunits

    Get PDF
    CaVΞ² subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although GΞ²Ξ³-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVΞ² subunit with the CaVΞ±1 subunit, when such interaction was prevented by a mutation in the Ξ±1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVΞ² subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVΞ² subunit that is required for this process. We have coexpressed the CaVΞ² subunit constructs with CaV2.2 and Ξ±2Ξ΄-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVΞ² subunit GK domains, from either Ξ²1b or Ξ²2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from Ξ²2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances GΞ²Ξ³ binding affinity, leading to greater tonic modulation by basal levels of GΞ²Ξ³. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVΞ² subunit GK domains alone

    Intraflagellar Transport (IFT) Protein IFT25 Is a Phosphoprotein Component of IFT Complex B and Physically Interacts with IFT27 in Chlamydomonas

    Get PDF
    BACKGROUND: Intraflagellar transport (IFT) is the bidirectional movement of IFT particles between the cell body and the distal tip of a flagellum. Organized into complexes A and B, IFT particles are composed of at least 18 proteins. The function of IFT proteins in flagellar assembly has been extensively investigated. However, much less is known about the molecular mechanism of how IFT is regulated. METHODOLOGY/PRINCIPAL FINDINGS: We herein report the identification of a novel IFT particle protein, IFT25, in Chlamydomonas. Dephosphorylation assay revealed that IFT25 is a phosphoprotein. Biochemical analysis of temperature sensitive IFT mutants indicated that IFT25 is an IFT complex B subunit. In vitro binding assay confirmed that IFT25 binds to IFT27, a Rab-like small GTPase component of the IFT complex B. Immunofluorescence staining showed that IFT25 has a punctuate flagellar distribution as expected for an IFT protein, but displays a unique distribution pattern at the flagellar base. IFT25 co-localizes with IFT27 at the distal-most portion of basal bodies, probably the transition zones, and concentrates in the basal body region by partially overlapping with other IFT complex B subunits, such as IFT46. Sucrose density gradient centrifugation analysis demonstrated that, in flagella, the majority of IFT27 and IFT25 including both phosphorylated and non-phosphorylated forms are cosedimented with other complex B subunits in the 16S fractions. In contrast, in cell body, only a fraction of IFT25 and IFT27 is integrated into the preassembled complex B, and IFT25 detected in complex B is preferentially phosphorylated. CONCLUSION/SIGNIFICANCE: IFT25 is a phosphoprotein component of IFT particle complex B. IFT25 directly interacts with IFT27, and these two proteins likely form a subcomplex in vivo. We postulate that the association and disassociation between the subcomplex of IFT25 and IFT27 and complex B might be involved in the regulation of IFT

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, AndrΓ©s. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas. Oficina de CoordinaciΓ³n Administrativa Parque Centenario. Instituto de Investigaciones BioquΓ­micas de Buenos Aires. FundaciΓ³n Instituto Leloir. Instituto de Investigaciones BioquΓ­micas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologΓ­a. Laboratorio de CronobiologΓ­a; ArgentinaFil: Garavaglia, MatΓ­as Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologΓ­a. Laboratorio de Ing.genΓ©tica y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; ArgentinaFil: Goya, MarΓ­a Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologΓ­a. Laboratorio de CronobiologΓ­a; Argentina. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologΓ­a. Laboratorio de Ing.genΓ©tica y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologΓ­a. Laboratorio de CronobiologΓ­a; Argentina. Consejo Nacional de Investigaciones CientΓ­ficas y TΓ©cnicas; Argentin

    Expression of CCN family of genes in human skin in vivo and alterations by solar-simulated ultraviolet irradiation

    Get PDF
    The CCN family of proteins is involved in diverse biological functions such as cell growth, adhesion, migration, angiogenesis, and regulation of extracellular matrix. We have investigated expression of CCN family genes and alternations induced by solar-simulated ultraviolet irradiation in human skin in vivo. Transcripts of all six CCN genes were expressed in human skin in vivo. CCN5 was most abundantly expressed followed by CCN2>CCN3>CCN1>CCN4>CCN6. Solar-simulated ultraviolet irradiation increased mRNA expression of CCN1 and CCN2. In contrast, mRNA levels of CCN3, CCN4, CCN5, and CCN6, were reduced. Knowledge gained from this study provides the foundation to explore the functional roles of CCN gene products in cutaneous biology and responses to solar ultraviolet irradiation

    IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas

    Get PDF
    Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division

    The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex

    Get PDF
    Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the extracellular environment. The mechanism by which proteins are sorted, specifically to this subdomain of the plasma membrane, is almost completely unknown. Previously, we showed that the IFT20 subunit of the intraflagellar transport particle is localized to the Golgi complex, in addition to the cilium and centrosome, and hypothesized that the Golgi pool of IFT20 plays a role in sorting proteins to the ciliary membrane. Here, we show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11. Mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia. Cells lacking GMAP210 have normal Golgi structure, but IFT20 is no longer localized to this organelle. GMAP210 is not absolutely required for ciliary assembly, but cilia on GMAP210 mutant cells are shorter than normal and have reduced amounts of the membrane protein polycystin-2 localized to them. This work suggests that GMAP210 and IFT20 function together at the Golgi in the sorting or transport of proteins destined for the ciliary membrane

    Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood.</p> <p>Method</p> <p>The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS.</p> <p>Results</p> <p>Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2Ξ± consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP.</p> <p>Conclusions</p> <p>Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.</p
    • …
    corecore