59 research outputs found

    Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain

    Get PDF
    Imaging techniques based on optical contrast analysis can be used to visualize dynamic and functional properties of the nervous system via optical signals resulting from changes in blood volume, oxygen consumption and cellular swelling associated with brain physiology and pathology. Here we report in vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means of laser-induced photoacoustic tomography (PAT). The advantage of PAT over pure optical imaging is that it retains intrinsic optical contrast characteristics while taking advantage of the diffraction-limited high spatial resolution of ultrasound. We accurately mapped rat brain structures, with and without lesions, and functional cerebral hemodynamic changes in cortical blood vessels around the whisker-barrel cortex in response to whisker stimulation. We also imaged hyperoxia- and hypoxia-induced cerebral hemodynamic changes. This neuroimaging modality holds promise for applications in neurophysiology, neuropathology and neurotherapy

    Military veteran mortality following a survived suicide attempt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suicide is a global public health problem. Recently in the U.S., much attention has been given to preventing suicide and other premature mortality in veterans returning from Iraq and Afghanistan. A strong predictor of suicide is a past suicide attempt, and suicide attempters have multiple physical and mental comorbidities that put them at risk for additional causes of death. We examined mortality among U.S. military veterans after hospitalization for attempted suicide.</p> <p>Methods</p> <p>A retrospective cohort study was conducted with all military veterans receiving inpatient treatment during 1993-1998 at United States Veterans Affairs (VA) medical facilities following a suicide attempt. Deaths occurring during 1993-2002, the most recent available year at the time, were identified through VA Beneficiary and Records Locator System data and National Death Index data. Mortality data for the general U.S. adult population were also obtained from the National Center for Health Statistics. Comparisons within the veteran cohort, between genders, and against the U.S. population were conducted with descriptive statistics and standardized mortality ratios. The actuarial method was used estimate the proportion of veterans in the cohort we expect would have survived through 2002 had they experienced the same rate of death that occurred over the study period in the U.S. population having the age and sex characteristics.</p> <p>Results</p> <p>During 1993-1998, 10,163 veterans were treated and discharged at a VA medical center after a suicide attempt (mean age = 44 years; 91% male). There was a high prevalence of diagnosed alcohol disorder or abuse (31.8%), drug dependence or abuse (21.8%), psychoses (21.2%), depression (18.5%), and hypertension (14.2%). A total of 1,836 (18.1%) veterans died during follow up (2,941.4/100,000 person years). The cumulative survival probability after 10 years was 78.0% (95% CI = 72.9, 83.1). Hence the 10-year cumulative mortality risk was 22.0%, which was 3.0 times greater than expected. The leading causes overall were heart disease (20.2%), suicide (13.1%), and unintentional injury (12.7%). Whereas suicide was the ninth leading cause of death in the U.S. population overall (1.8%) during the study period, suicide was the leading and second leading cause among women (25.0%) and men (12.7%) in the cohort, respectively.</p> <p>Conclusions</p> <p>Veterans who have attempted suicide face elevated risks of all-cause mortality with suicide being prominent. This represents an important population for prevention activities.</p

    The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations

    Get PDF
    This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedicationIt is commonly accepted that the Inferior Olive (IO) provides a timing signal to the cerebellum. Stable subthreshold oscillations in the IO can facilitate accurate timing by phase-locking spikes to the peaks of the oscillation. Several theoretical models accounting for the synchronized subthreshold oscillations have been proposed, however, two experimental observations remain an enigma. The first is the observation of frequent alterations in the frequency of the oscillations. The second is the observation of constant phase differences between simultaneously recorded neurons. In order to account for these two observations we constructed a canonical network model based on anatomical and physiological data from the IO. The constructed network is characterized by clustering of neurons with similar conductance densities, and by electrical coupling between neurons. Neurons inside a cluster are densely connected with weak strengths, while neurons belonging to different clusters are sparsely connected with stronger connections. We found that this type of network can robustly display stable subthreshold oscillations. The overall frequency of the network changes with the strength of the inter-cluster connections, and phase differences occur between neurons of different clusters. Moreover, the phase differences provide a mechanistic explanation for the experimentally observed propagating waves of activity in the IO. We conclude that the architecture of the network of electrically coupled neurons in combination with modulation of the inter-cluster coupling strengths can account for the experimentally observed frequency changes and the phase differences.Peer reviewedFinal Published versio

    Altered amygdala activation during face processing in Iraqi and Afghanistani war veterans

    Get PDF
    Abstract Background Exposure to combat can have a significant impact across a wide array of domains, and may manifest as post-traumatic stress disorder (PTSD), a debilitating mental illness that is associated with neural and affective sequelae. This study tested the hypothesis that combat-exposed individuals with and without PTSD, relative to healthy control subjects with no history of PTSD or combat exposure, would show amygdala hyperactivity during performance of a well-validated face processing task. We further hypothesized that differences in the prefrontal cortex would best differentiate the combat-exposed groups with and without PTSD. Methods Twelve men with PTSD related to combat in Operations Enduring Freedom and/or Iraqi Freedom, 12 male combat-exposed control patients with a history of Operations Enduring Freedom and/or Iraqi Freedom combat exposure but no history of PTSD, and 12 healthy control male patients with no history of combat exposure or PTSD completed a face-matching task during functional magnetic resonance imaging. Results The PTSD group showed greater amygdala activation to fearful versus happy faces than both the combat-exposed control and healthy control groups. Both the PTSD and the combat-exposed control groups showed greater amygdala activation to all faces versus shapes relative to the healthy control group. However, the combat-exposed control group relative to the PTSD group showed greater prefrontal/parietal connectivity with the amygdala, while the PTSD group showed greater connectivity with the subgenual cingulate. The strength of connectivity in the PTSD group was inversely related to avoidance scores. Conclusions These observations are consistent with the hypothesis that PTSD is associated with a deficiency in top-down modulation of amygdala activation by the prefrontal cortex and shows specific sensitivity to fearful faces

    Nest Making and Oxytocin Comparably Promote Wound Healing in Isolation Reared Rats

    Get PDF
    Background: Environmental enrichment (EE) fosters attachment behavior through its effect on brain oxytocin levels in the hippocampus and other brain regions, which in turn modulate the hypothalamic-pituitary axis (HPA). Social isolation and other stressors negatively impact physical healing through their effect on the HPA. Therefore, we reasoned that: 1) provision of a rat EE (nest building with Nestlets®) would improve wound healing in rats undergoing stress due to isolation rearing and 2) that oxytocin would have a similar beneficial effect on wound healing. Methodology/Principal Findings: In the first two experiments, we provided isolation reared rats with either EE or oxytocin and compared their wound healing to group reared rats and isolation reared rats that did not receive Nestlets or oxytocin. In the third experiment, we examined the effect of Nestlets on open field locomotion and immediate early gene (IEG) expression. We found that isolation reared rats treated with Nestlets a) healed significantly better than without Nestlets, 2) healed at a similar rate to rats treated with oxytocin, 3) had decreased hyperactivity in the open field test, and 4) had normalized IEG expression in brain hippocampus. Conclusions/Significance: This study shows that when an EE strategy or oxytocin is given to isolation reared rats, the peripheral stress response, as measured by burn injury healing, is decreased. The findings indicate an association between the effect of nest making on wound healing and administration of the pro-bonding hormone oxytocin. Further elucidation of this animal model should lead to improved understanding of how EE strategies can ameliorate poor wound healing and other symptoms that result from isolation stress

    Does the oxytocin receptor polymorphism (rs2254298) confer 'vulnerability' for psychopathology or 'differential susceptibility'? insights from evolution

    Get PDF
    The diathesis-stress model of psychiatric conditions has recently been challenged by the view that it might be more accurate to speak of 'differential susceptibility' or 'plasticity' genes, rather than one-sidedly focusing on individual vulnerability. That is, the same allelic variation that predisposes to a psychiatric disorder if associated with (developmentally early) environmental adversity may lead to a better-than-average functional outcome in the same domain under thriving (or favourable) environmental conditions. Studies of polymorphic variations of the serotonin transporter gene, the monoamino-oxidase-inhibitor A coding gene or the dopamine D4 receptor gene indicate that the early environment plays a crucial role in the development of favourable versus unfavourable outcomes. Current evidence is limited, however, to establishing a link between genetic variation and behavioural phenotypes. In contrast, little is known about how plasticity may be expressed at the neuroanatomical level as a 'hard-wired' correlate of observable behaviour. The present review article seeks to further strengthen the argument in favour of the differential susceptibility theory by incorporating findings from behavioural and neuroanatomical studies in relation to genetic variation of the oxytocin receptor gene. It is suggested that polymorphic variation at the oxytocin receptor gene (rs2254298) is associated with sociability, amygdala volume and differential risk for psychiatric conditions including autism, depression and anxiety disorder, depending on the quality of early environmental experiences. Seeing genetic variation at the core of developmental plasticity can explain, in contrast to the diathesis-stress perspective, why evolution by natural selection has maintained such 'risk' alleles in the gene pool of a population

    Rumination in bipolar disorder: evidence for an unquiet mind

    Get PDF
    Depression in bipolar disorder has long been thought to be a state characterized by mental inactivity. However, recent research demonstrates that patients with bipolar disorder engage in rumination, a form of self-focused repetitive cognitive activity, in depressed as well as in manic states. While rumination has long been associated with depressed states in major depressive disorder, the finding that patients with bipolar disorder ruminate in manic states is unique to bipolar disorder and challenges explanations put forward for why people ruminate. We review the research on rumination in bipolar disorder and propose that rumination in bipolar disorder, in both manic and depressed states, reflects executive dysfunction. We also review the neurobiology of bipolar disorder and recent neuroimaging studies of rumination, which is consistent with our hypothesis that the tendency to ruminate reflects executive dysfunction in bipolar disorder. Finally, we relate the neurobiology of rumination to the neurobiology of emotion regulation, which is disrupted in bipolar disorder
    corecore