33 research outputs found

    Supramolecular Sensing of Chemical Warfare Agents.

    Get PDF
    AbstractChemical warfare agents are a class of organic molecules used as chemical weapons due to their high toxicity and lethal effects. For this reason, the fast detection of these compounds in the environment is crucial. Traditional detection methods are based on instrumental techniques, such as mass spectrometry or HPLC, however the use of molecular sensors able to change a detectable property (e. g., luminescence, color, electrical resistance) can be cheaper and faster. Today, molecular sensing of chemical warfare agents is mainly based on the "covalent approach", in which the sensor reacts with the analyte, or on the "supramolecular approach", which involves the formation of non‐covalent interactions between the sensor and the analyte. This Review is focused on the recent developments of supramolecular sensors of organophosphorus chemical warfare agents (from 2013). In particular, supramolecular sensors are classified by function of the sensing mechanism: i) Lewis Acids, ii) hydrogen bonds, iii) macrocyclic hosts, iv) multi‐topic sensors, v) nanosensors. It is shown how the supramolecular non‐covalent approach leads to a reversible sensing and higher selectivity towards the selected analyte respect to other interfering molecules

    Multitopic Supramolecular Detection of Chemical Warfare Agents by Fluorescent Sensors

    Get PDF
    Two new naphthalimide derivatives (hosts), bearing one or two ethanolamine arms, respectively, were synthesized and tested as fluorescent probes for the detection of a chemical warfare agent simulant (guest). The resulting host–guest hydrogen bonds allowed a recognition mechanism based on supramolecular interactions. The sensor with two ethanolamine groups showed excellent sensibility and selectivity in a turn-on fluorescent response

    Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices

    Get PDF
    A bioinspired method of communication among biodevices based on fluorescent nanoparticles is herein presented. This approach does not use electromagnetic waves but rather the exchange of chemical systems—a method known as molecular communication. The example outlined was based on the fluorescence properties of carbon dots and follows a circular economy approach as the method involves preparation from the juice of lemon waste. The synthesis is herein presented, and the fluorescence properties and diffusion coefficient are evaluated. The application of carbon dots to molecular communication was studied from a theoretical point of view by numerically solving the differential equation that governs the phenomenon. The theoretical results were used to develop a prototype molecular communication platform that enables the communication of simple messages via aqueous fluids to a fluorescence-detecting biodevice receiver

    Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents

    Get PDF
    Real-time sensing of chemical warfare agents (CWAs) is, today, a crucial topic to prevent lethal effects of a chemical terroristic attack. For this reason, the development of efficient, selective, ..

    Nanomaterials for Cortisol Sensing

    No full text
    Space represents one of the most dangerous environments for humans, which can be affected by high stress levels. This can lead to severe physiological problems, such as headaches, gastrointestinal disorders, anxiety, hypertension, depression, and coronary heart diseases. During a stress condition, the human body produces specific hormones, such as dopamine, adrenaline, noradrenaline, and cortisol. In particular, the control of cortisol levels can be related to the stress level of an astronaut, particularly during a long-term space mission. The common analytical methods (HPLC, GC-MS) cannot be used in an extreme environment, such as a space station, due to the steric hindrance of the instruments and the absence of gravity. For these reasons, the development of smart sensing devices with a facile and fast analytical protocol can be extremely useful for space applications. This review summarizes the recent (from 2011) miniaturized sensoristic devices based on nanomaterials (gold and carbon nanoparticles, nanotubes, nanowires, nano-electrodes), which allow rapid and real-time analyses of cortisol levels in biological samples (such as saliva, urine, sweat, and plasma), to monitor the health conditions of humans under extreme stress conditions

    Catalysis inside Supramolecular Capsules: Recent Developments

    No full text
    In the last decades, supramolecular chemists have developed new molecular receptors able to include a wide range of guests. In addition, they have designed synthetic hosts able to form capsules having an internal volume of thousands of Å3. This inner space shows different features from the bulk solution. In particular, this environment has recently been employed to perform chemical reactions, obtaining reaction products different from the “normal” conditions. These supramolecular capsules act as nanoreactors, catalyzing many chemical transformations. This review collects the recent developments (since 2015) in this field, focusing on supramolecular capsules based on resorcinarene hexameric capsules and metal-cage capsules

    N-isobutyl-1,8-bis(isobutylamino)-naphthalimide

    No full text
    Naphthalimides make up a class of organic molecules characterised by excellent spectroscopic properties due to their extended conjugate system. Furthermore, various asymmetric or symmetric compounds can be obtained from naphthalimides by the different functionalization that can be performed on the nitrogen and/or on the aromatic rings. The introduction of a wide range of substituents in different positions allows chemical and spectroscopic properties to be regulated. In this contribution, we report the synthesis and characterization of a new 4,5-amino-1,8-naphthalimide bearing three isobutyl substituents

    Catalytic Degradation of Nerve Agents

    No full text
    Nerve agents (NAs) are a group of highly toxic organophosphorus compounds developed before World War II. They are related to organophosphorus pesticides, although they have much higher human acute toxicity than commonly used pesticides. After the detection of the presence of NAs, the critical step is the fast decontamination of the environment in order to avoid the lethal effect of these organophosphorus compounds on exposed humans. This review collects the catalytic degradation reactions of NAs, in particular focusing our attention on chemical hydrolysis. These reactions are catalyzed by different catalyst categories (metal-based, polymeric, heterogeneous, enzymatic and MOFs), all of them described in this review

    Catalysis with carbon nanoparticles

    No full text
    Carbon nanoparticles represent a new class of nanocatalysts able to catalyze different reactions. This review collects the catalytic applications of these nanoparticles
    corecore