4,503 research outputs found

    Statistical Mechanics of DNA Rupture: Theory and Simulations

    Full text link
    We study the effects of the shear force on the rupture mechanism on a double stranded DNA. Motivated by recent experiments, we perform the atomistic simulations with explicit solvent to obtain the distributions of extension in hydrogen and covalent bonds below the rupture force. We obtain a significant difference between the atomistic simulations and the existing results in the iterature based on the coarse-grained models (theory and simulations). We discuss the possible reasons and improve the coarse-grained model by incorporating the consequences of semi-microscopic details of the nucleotides in its description. The distributions obtained by the modified model (simulations and theoretical) are qualitatively similar to the one obtained using atomistic simulations.Comment: 18 pages, 9 figures. Accepted in J. Chem. Phys. (2013). arXiv admin note: text overlap with arXiv:1104.305

    Glassy magnetic phase driven by short range charge and magnetic ordering in nanocrystalline La1/3_{1/3}Sr2/3_{2/3}FeO3−δ_{3-\delta}: Magnetization, Mossbauer, and polarised neutron studies

    Get PDF
    The charge ordered La1/3_{1/3}Sr2/3_{2/3}FeO3−δ_{3-\delta} (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M\"{o}ssbauer, and polarised neutron studies. A complex scenario of short range charge and magnetic ordering is realized from the polarised neutron studies in nanocrystalline specimen. This short range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+^{3+} and Fe5+^{5+} compared to bulk counterpart as evident in the M\"{o}ssbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+^{3+} and Fe5+^{5+} are about 3.15μB\mu_B and 1.57μB\mu_B for bulk, and 2.7μB\mu_B and 0.53μB\mu_B for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼\sim 70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass like transition around ∼\sim 65 K, below which EB appears. Overall results propose that finite size effect directs the complex glassy magnetic behavior driven by unconventional short range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.Comment: 10 pages, 9 figures. Fig. 1 available upon request or in http://www.ffn.ub.es/oscar/Articles.html. Accepted in Phys. Rev.

    Normal mode analysis for scalar fields in BTZ black hole background

    Full text link
    We analyze the possibility of inequivalent boundary conditions for a scalar field propagating in the BTZ black hole space-time. We find that for certain ranges of the black hole parameters, the Klein-Gordon operator admits a one-parameter family of self-adjoint extensions. For this range, the BTZ space-time is not quantum mechanically complete. We suggest a physically motivated method for determining the spectra of the Klein-Gordon operator.Comment: 6 pages, no figure, late
    • …
    corecore