3,145 research outputs found

    Single Leptoquark Production at e+ee^+e^- and γγ\gamma\gamma Colliders

    Full text link
    We consider single production of leptoquarks (LQ's) at e+ee^+e^- and γγ\gamma\gamma colliders, for two values of the centre-of-mass energy, s=500\sqrt{s}=500 GeV and 1 TeV. We find that LQ's which couple within the first generation are observable for LQ masses almost up to the kinematic limit, both at e+ee^+e^- and γγ\gamma\gamma colliders, for the LQ coupling strength equal to αem\alpha_{em}. The cross sections for single production of 2nd2^{nd}- and 3rd3^{rd}-generation LQ's at e+ee^+e^- colliders are too small to be observable. In γγ\gamma\gamma collisions, on the other hand, 2nd2^{nd}-generation LQ's with masses much larger than s/2\sqrt{s}/2 can be detected. However, 3rd3^{rd}-generation LQ's can be seen at γγ\gamma\gamma colliders only for masses at most s/2\sim\sqrt{s}/2, making their observation more probable via the pair production mechanism.Comment: plain TeX, 14 pages, 6 figures (not included but available on request), some minor changes to the text, one reference added, figures and conclusions unchanged, UdeM-LPN-TH-93-152, McGill-93/2

    Some combinatorial identities related to commuting varieties and Hilbert schemes

    Get PDF
    In this article we explore some of the combinatorial consequences of recent results relating the isospectral commuting variety and the Hilbert scheme of points in the plane

    Vortex Origin of Tricritical Point in Ginzburg-Landau Theory

    Full text link
    Motivated by recent experimental progress in the critical regime of high-TcT_c superconductors we show how the tricritical point in a superconductor can be derived from the Ginzburg-Landau theory as a consequence of vortex fluctuations. Our derivation explains why usual renormalization group arguments always produce a first-order transition, in contrast to experimental evidence and Monte Carlo simulations.Comment: 4 pages,1 figur

    Effective Potential for Scalar Field in Three Dimensions: Ising Model in the Ferromagnetic Phase

    Get PDF
    We compute the effective potential Veff(ϕ)V_{\rm eff}(\phi) for one-component real scalar field ϕ\phi in three Euclidean dimensions (3D) in the case of spontaneously broken symmetry, from the Monte Carlo simulation of the 3D Ising model in external field at temperatures approaching the phase transition from below. We study probability distributions of the order parameter on the lattices from 30330^3 to 74374^3, at L/ξ10L/\xi \approx 10. We find that, in close analogy with the symmetric case, ϕ6\phi^6 plays an important role: Veff(ϕ)V_{\rm eff}(\phi) is very well approximated by the sum of ϕ2\phi^2, ϕ4\phi^4 and ϕ6\phi^6 terms. An unexpected feature is the negative sign of the ϕ4\phi^4 term. As close to the continuum limit as we can get (ξ7.2\xi \approx 7.2), we obtain Leff12μϕμϕ+1.7(ϕ2η2)2(ϕ2+η2). {\cal L}_{\rm eff} \approx {1 \over 2} \partial_\mu \phi \partial_\mu \phi + 1.7 (\phi^2 - \eta^2)^2 (\phi^2 + \eta^2). We also compute several universal coupling constants and ratios, including the combination of critical amplitudes C(f1)3B2C^- (f_1^-)^{-3} B^{-2}.Comment: 13 pages, 5 Postscript figures, uses epsf.st

    Low temperature phase diagram of condensed para-Hydrogen in two dimensions

    Full text link
    Extensive Path Integral Monte Carlo simulations of condensed para-Hydrogen in two dimensions at low temperature have been carried out. In the zero temperature limit, the system is a crystal at equilibrium, with a triangular lattice structure. No metastable liquid phase is observed, as the system remains a solid down to the spinodal density, and breaks down into solid clusters at lower densities. The equilibrium crystal is found to melt at a temperature close to 7 K

    Molecular hydrogen isotopes adsorbed on krypton-preplated graphite: Quantum Monte Carlo simulations

    Full text link
    Adsorption of ortho-deuterium and para-hydrogen films on a graphite substrate, pre-plated with a single atomic layer of krypton, is studied theoretically by means of quantum Monte Carlo simulations at low temperature. Our model explicitly includes substrate corrugation. Energetic and structural properties of these adsorbed films are computed for a range of hydrogen coverages. Thermodynamically stable adsorbed films are solid, with no clear evidence of any liquid-like phase. Quantum exchanges of ortho-deuterium and para-hydrogen are essentially absent in this system, down to zero temperature; consequently, this system displays no superfluidity in this limit. Our simulations provide evidence of a stable domain wall fluid at low temperature, consistently with recent experimental observations.Comment: 7 pages, 7 figure

    Observation of Coherently-Enhanced Tunable Narrow-Band Terahertz Transition Radiation from a Relativistic Sub-Picosecond Electron Bunch Train

    Full text link
    We experimentally demonstrate the production of narrow-band (δf/f20\delta f/f \simeq20% at f0.5f\simeq 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.Comment: 3 pages, 6 figure

    Melting of a p-H2 monolayer on a lithium substrate

    Full text link
    Adsorption of para-hydrogen films on Alkali metals substrates at low temperature is studied theoretically by means of Path Integral Monte Carlo simulations. Realistic potentials are utilized to model the interaction between two para-hydrogen molecules, as well as between a para-hydrogenmolecule and the substrate, assumed smooth. Results show that adsorption of para-hydrogen on a Lithium substrate, the most attractive among the Alkali, occurs through completion of successive solid adlayers. Each layer has a two-dimensional density approximatley equal 0.070 inverse square Angstroms. A solid para-hydrogen monolayer displays a higher degree of confinement, in the direction perpendicular to the substrate, than a monolayer Helium film, and has a melting temperature of about 6.5 K. The other Alkali substrates are not attractive enough to be wetted by molecular hydrogen at low temperature. No evidence of a possible superfluid phase of para-hydrogen is seen in these systems.Comment: Scales on the y-axis in Figs. 4,5 and 7 are off by a factor 2 in published version; corrected her

    The visible effect of a very heavy magnetic monopole at colliders

    Get PDF
    If a heavy Dirac monopole exists, the light-to-light scattering below the monopole production threshold is enhanced due to strong coupling of monopoles to photons. At the next Linear Collider with electron beam energy 250 GeV this photon pair production could be observable at monopole masses less than 2.5-6.4 TeV in the e+ee^+e^- mode or 3.7-10 TeV in the γγ\gamma\gamma mode, depending on the monopole spin. At the upgraded Tevatron such an effect is expected to be visible at monopole masses below 1-2.5 TeV. The strong dependence on the initial photon polarizations allows to find the monopole spin in experiments at e+ee^+e^- and γγ\gamma\gamma colliders. We consider the ZγZ\gamma production and the 3γ3\gamma production at e+ee^+e^- and pppp or ppˉp\bar{p} colliders via the same monopole loop. The possibility to discover these processes is significantly lower than that of the γγ\gamma\gamma case.Comment: 18 pages, 2 figures, RevTe
    corecore