6,213 research outputs found

    K^0-\bar{K}^0 Mixing Beyond the SM from Nf=2 tmQCD

    Full text link
    We present preliminary results on the of neutral kaon oscillations in extensions of the Standard Model. Using Nf=2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks, we achieve both O(a)-improvement and continuum-like renormalization pattern for the relevant four-fermion operators. We perform simulations at three values of the lattice spacing and extrapolate/interpolate our results to the continuum limit and physical light/strange quark mass. The calculation of the renormalization constants of the complete operator basis is performed non- perturbatively in the RI-MOM scheme.Comment: 7 pages, 2 figures; presented at the XXVIII International Symposium on Lattice Field Theory Villasimius, Sardinia, Ital

    Kaon oscillations in the Standard Model and Beyond using Nf=2 dynamical quarks

    Get PDF
    We compute non-perturbatively the B-parameters of the complete basis of four-fermion operators needed to study the Kaon oscillations in the SM and in its supersymmetric extension. We perform numerical simulations with two dynamical maximally twisted sea quarks at three values of the lattice spacing on configurations generated by the ETMC. Unwanted operator mixings and O(a) discretization effects are removed by discretizing the valence quarks with a suitable Osterwalder-Seiler variant of the Twisted Mass action. Operators are renormalized non-perturbatively in the RI/MOM scheme. Our preliminary result for BK(RGI) is 0.73(3)(3).Comment: 7 pages, 3 figures, 1 table, proceedings of the XXVII Int'l Symposyum on Lattice Field Theory (LAT2009), July 26-31 2009, Peking University, Beijing (China

    B-physics from the ratio method with Wilson twisted mass fermions

    Get PDF
    We present a precise lattice QCD determination of the b-quark mass, of the B and Bs decay constants and first preliminary results for the B-mesons bag parameter. Simulations are performed with Nf = 2 Wilson twisted mass fermions at four values of the lattice spacing and the results are extrapolated to the continuum limit. Our calculation benefits from the use of improved interpolating operators for the B-mesons and employs the so-called ratio method. The latter allows a controlled interpolation at the b-quark mass between the relativistic data around and above the charm quark mass and the exactly known static limit.Comment: 7 pages, 4 figures, 1 table. Proceedings of the 30th International Symposium on Lattice Field Theory - Lattice 2012; June 24-29, 2012; Cairns, Australi

    B-physics from lattice QCD...with a twist

    Full text link
    We present a precise lattice QCD determination of the b-quark mass, of the B and Bs decay constants and first results for the B-meson bag parameters. For our computation we employ the so-called ratio method and our results benefit from the use of improved interpolating operators for the B-mesons. QCD calculations are performed with Nf = 2 dynamical light-quarks at four values of the lattice spacing and the results are extrapolated to the continuum limit. The preliminary results are mb(mb) = 4.35(12) GeV for the MSbar b-quark mass, fBs = 234(6) MeV and fB = 197(10) MeV for the B-meson decay constants, BBs(mb) = 0.90(5) and BB(mb) = 0.87(5) for the B-meson bag parameters.Comment: 6 pages, 3 figures. Proceedings of the 36th International Conference on High Energy Physics - ICHEP 2012; July 4-11 2012; Melbourne, Australi

    B-physics computations from Nf=2 tmQCD

    Get PDF
    We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.Comment: 7 pages, 4 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    K-meson vector and tensor decay constants and BK-parameter from Nf=2 tmQCD

    Full text link
    We present work in progress on the computation of the K-meson vector and tensor decay constants, as well as the B-parameter in Kaon oscillations. Our simulations are performed in a partially quenched setup, with two dynamical (sea) Wilson quark flavours, having a maximally twisted mass term. Valence quarks are either of the standard or the Osterwalder-Seiler maximally twisted variety. These two regularizations can be suitably combined in order to obtain a BK parameter which is both multiplicatively renormalizable and O(a) improved.Comment: 7 pages, 4 figures, talk presented at the XXVI International Symposium on Lattice Field Theory, July 14 - 19, 2008, Williamsburg, Virginia, US

    The INTEGRAL view of the Soft Gamma-ray Repeater SGR 1806-20

    Full text link
    We present the results obtained by INTEGRAL on the Soft-Gamma Ray Repeater SGR 1806-20. In particular we report on the temporal and spectral properties of the bursts detected during a moderately active period of the source in September and October 2003 and on the search for quiescent emission.Comment: To appear in the proceedings (ESA-SP) of the 5th INTEGRAL Workshop, "The INTEGRAL UNIVERSE", Munich, 16-20 February 200

    Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Get PDF
    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 343^4 to 16416^4) and couplings (from ÎČ≈9\beta \approx 9 to ÎČ≈60\beta \approx 60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen
    • 

    corecore