32,488 research outputs found
Used infant mattresses and sudden infant death syndrome in Scotland: case-control study
<P>OBJECTIVE: To examine the proposition that a used infant mattress is associated with an increased risk of sudden infant death syndrome. DESIGN: Case-control study. SETTING: Scotland (population 5.1 million, with about 53 000 births a year).</P> <P>PARTICIPANTS: 131 infants who died of sudden infant death syndrome between 1 January 1996 and 31 May 2000 and 278 age, season, and obstetric unit matched control infants.</P> <P>MAIN OUTCOME MEASURES: Routine use of an infant mattress previously used by another child and place of last sleep.</P> <P>RESULTS: Routine use of an infant mattress previously used by another child was significantly associated with an increased risk of sudden infant death syndrome (multivariate odds ratio 3.07, 95% confidence interval 1.51 to 6.22). Use of a used infant mattress for last sleep was also associated with increased risk (6.10, 2.31 to 16.12). The association was significantly stronger if the mattress was from another home (4.78, 2.08 to 11.0) than if it was from the same home (1.64, 0.64 to 4.2).</P> <P>CONCLUSION: A valid significant association exists between use of a used infant mattress and an increased risk of sudden infant death syndrome, particularly if the mattress is from another home. Insufficient evidence is available to judge whether this relation is cause and effect.</P>
Nanodiamond arrays on glass for quantification and fluorescence characterisation
Quantifying the variation in emission properties of fluorescent nanodiamonds
is important for developing their wide-ranging applicability. Directed
self-assembly techniques show promise for positioning nanodiamonds precisely
enabling such quantification. Here we show an approach for depositing
nanodiamonds in pre-determined arrays which are used to gather statistical
information about fluorescent lifetimes. The arrays were created via a layer of
photoresist patterned with grids of apertures using electron beam lithography
and then drop-cast with nanodiamonds. Electron microscopy revealed a 90%
average deposition yield across 3,376 populated array sites, with an average of
20 nanodiamonds per site. Confocal microscopy, optimised for nitrogen vacancy
fluorescence collection, revealed a broad distribution of fluorescent lifetimes
in agreement with literature. This method for statistically quantifying
fluorescent nanoparticles provides a step towards fabrication of hybrid
photonic devices for applications from quantum cryptography to sensing
Gravitational hydrodynamics of large scale structure formation
The gravitational hydrodynamics of the primordial plasma with neutrino hot
dark matter is considered as a challenge to the bottom-up cold dark matter
paradigm. Viscosity and turbulence induce a top-down fragmentation scenario
before and at decoupling. The first step is the creation of voids in the
plasma, which expand to 37 Mpc on the average now. The remaining matter clumps
turn into galaxy clusters. Turbulence produced at expanding void boundaries
causes a linear morphology of 3 kpc fragmenting protogalaxies along vortex
lines. At decoupling galaxies and proto-globular star clusters arise; the
latter constitute the galactic dark matter halos and consist themselves of
earth-mass H-He planets. Frozen planets are observed in microlensing and
white-dwarf-heated ones in planetary nebulae. The approach also explains the
Tully-Fisher and Faber-Jackson relations, and cosmic microwave temperature
fluctuations of micro-Kelvins.Comment: 6 pages, no figure
Self-consistent massive disks in triaxial dark matter halos
Galactic disks in triaxial dark matter halos become deformed by the
elliptical potential in the plane of the disk in such a way as to counteract
the halo ellipticity. We develop a technique to calculate the equilibrium
configuration of such a disk in the combined disk-halo potential, which is
based on the method of Jog (2000) but accounts for the radial variation in both
the halo potential and the disk ellipticity. This crucial ingredient results in
qualitatively different behavior of the disk: the disk circularizes the
potential at small radii, even for a reasonably low disk mass. This effect has
important implications for proposals to reconcile cuspy halo density profiles
with low surface brightness galaxy rotation curves using halo triaxiality. The
disk ellipticities in our models are consistent with observational estimates
based on two-dimensional velocity fields and isophotal axis ratios.Comment: ApJ, in pres
Partially-erupting prominences: a comparison between observations and model-predicted observables
<p><b>Aims:</b> We investigate several partially-erupting prominences to study their relationship with other CME-associated phenomena and compare these observations with observables predicted by a model of partially-expelled-flux-ropes (Gibson & Fan 2006a, ApJ, 637, L65; 2006b, J. Geophys. Res., 111, 12103).</p>
<p><b>Methods:</b> We studied 6 selected events with partially-erupting prominences using multi-wavelength observations recorded by the Extreme-ultraviolet Imaging Telescope (EIT), Transition Region and Coronal Explorer (TRACE), Mauna Loa Solar Observatory (MLSO), Big Bear Solar Observatory (BBSO), and Soft X-ray Telescope (SXT). The observational features associated with partially-erupting prominences were then compared with the predicted observables from the model.</p>
<p><b>Results:</b> The partially-expelled-flux-rope (PEFR) model can explain the partial eruption of these prominences, and in addition predicts a variety of other CME-related observables that provide evidence of internal reconnection during eruption. We find that all of the partially-erupting prominences studied in this paper exhibit indirect evidence of internal reconnection. Moreover, all cases showed evidence of at least one observable unique to the PEFR model, e.g., dimmings external to the source region and/or a soft X-ray cusp overlying a reformed sigmoid.</p>
<p><b>Conclusions:</b> The PEFR model provides a plausible mechanism to explain the observed evolution of partially-erupting-prominence-associated CMEs in our study.</p>
Characterising epithelial tissues using persistent entropy
In this paper, we apply persistent entropy, a novel topological statistic,
for characterization of images of epithelial tissues. We have found out that
persistent entropy is able to summarize topological and geometric information
encoded by \alpha-complexes and persistent homology. After using some
statistical tests, we can guarantee the existence of significant differences in
the studied tissues.Comment: 12 pages, 7 figures, 4 table
A Natural Solution to the Neutrino Mixing Problem
The combined requirements, of (i) a natural solution to the fermion mass
hierarchy problem and (ii) an explanation of both the atmospheric and solar
neutrino problems, lead to an essentially unique picture of neutrino masses and
mixing angles. The electron and muon neutrinos are quasi-degenerate in mass
with maximal mixing, giving vacuum oscillations. The
overall neutrino mass scale is set by the atmospheric neutrino requirement
eV, implying a mass for and
of order 1 eV in models with a natural mass hierarchy, whilst the tau neutrino
is expected to be much lighter than this and only weakly mixed. We present an
explicit example based on the anti-grand unification model of fermion masses.Comment: 16 pages, LaTeX, uses FeynTeX package for figure
Spectroscopy of a Cooper-Pair box in the Autler-Townes configuration
A theoretical spectroscopic analysis of a microwave driven superconducting
charge qubit (Cooper-pair box coupled) to an RLC oscillator model is performed.
By treating the oscillator as a probe through the backreaction effect of the
qubit on the oscillator circuit, we extract frequency splitting features
analogous to the Autler-Townes effect from quantum optics, thereby extending
the analogies between superconducting and quantum optical phenomenology. These
features are found in a frequency band that avoids the need for high frequency
measurement systems and therefore may be of use in qubit characterization and
coupling schemes. In addition we find this frequency band can be adjusted to
suit an experimental frequency regime by changing the oscillator frequency.Comment: 13 pages, 7 figures. v2: Revised version after referee comments.
Accepted for publication by Physical Review
Peacock Bundles: Bundle Coloring for Graphs with Globality-Locality Trade-off
Bundling of graph edges (node-to-node connections) is a common technique to
enhance visibility of overall trends in the edge structure of a large graph
layout, and a large variety of bundling algorithms have been proposed. However,
with strong bundling, it becomes hard to identify origins and destinations of
individual edges. We propose a solution: we optimize edge coloring to
differentiate bundled edges. We quantify strength of bundling in a flexible
pairwise fashion between edges, and among bundled edges, we quantify how
dissimilar their colors should be by dissimilarity of their origins and
destinations. We solve the resulting nonlinear optimization, which is also
interpretable as a novel dimensionality reduction task. In large graphs the
necessary compromise is whether to differentiate colors sharply between locally
occurring strongly bundled edges ("local bundles"), or also between the weakly
bundled edges occurring globally over the graph ("global bundles"); we allow a
user-set global-local tradeoff. We call the technique "peacock bundles".
Experiments show the coloring clearly enhances comprehensibility of graph
layouts with edge bundling.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Rim curvature anomaly in thin conical sheets revisited
This paper revisits one of the puzzling behaviors in a developable cone
(d-cone), the shape obtained by pushing a thin sheet into a circular container
of radius by a distance [E. Cerda, S. Chaieb, F. Melo, and L.
Mahadevan, {\sl Nature} {\bf 401}, 46 (1999)]. The mean curvature was reported
to vanish at the rim where the d-cone is supported [T. Liang and T. A. Witten,
{\sl Phys. Rev. E} {\bf 73}, 046604 (2006)]. We investigate the ratio of the
two principal curvatures versus sheet thickness over a wider dynamic range
than was used previously, holding and fixed. Instead of tending
towards 1 as suggested by previous work, the ratio scales as .
Thus the mean curvature does not vanish for very thin sheets as previously
claimed. Moreover, we find that the normalized rim profile of radial curvature
in a d-cone is identical to that in a "c-cone" which is made by pushing a
regular cone into a circular container. In both c-cones and d-cones, the ratio
of the principal curvatures at the rim scales as ,
where is the pushing force and is the Young's modulus. Scaling
arguments and analytical solutions confirm the numerical results.Comment: 25 pages, 12 figures. Added references. Corrected typos. Results
unchange
- …