3 research outputs found

    Biodegradable poly(D,L-lactide-co-glycolide)/poly(L-γ-glutamic acid) nanoparticles conjugated to folic acid for targeted delivery of doxorubicin

    Get PDF
    A novel targeted drug delivery nanoparticle system based on poly(D,L-lactide-co-glycolide) acid (PLGA) for delivery of doxorubicin (DOX) was developed. DOX-PLGA NPs were obtained by the emulsification-solvent evaporation technique. Then, their surface was modified with poly(L-γ-glutamic acid) (γ-PGA) and finally conjugated to modified folic acid (FA) as a targeting ligand. The surface modification and FA conjugation were followed by UV–Vis and FT-IR spectroscopies. Morphology was observed by TEM/SEM. Particle size, PDI and zeta potential were measured using DLS studies. Encapsulation and loading efficiencies, and DOX release kinetics were determined. Specific uptake and cell viability of DOX-PLGA/γ-PGA-FA NPs were tested in HeLa cells. Quasi-spherical nanoparticleswith a particle size lower than 600nm(DLS)were obtained. Spectroscopic techniques demonstrated the successful surface modification with γ-PGA and FA conjugation. Release profile of DOX-PLGA/γ-PGA-FA NPs showed a release of 55.4 ± 0.6% after seven days, in an acidic environment. HeLa cells exhibited a decrease in viability when treated with DOX-PLGA/γ-PGA-AF NPs, and cellular uptake was attributed to FA receptor-mediated endocytosis. These results suggest that DOX-PLGA/γ-PGA-FA NPs are a potential targeted drug carrier for further applications in cancer therapy.This study was supported by the International Atomic Energy Agency (CRP-F22064, Contract No. 18358) and the Universidad Autónoma del Estado de México, through the project No. 3543/2013CHT

    Synthesis and Evaluation of 177Lu-DOTA-DN(PTX)-BN for Selective and Concomitant Radio and Drug—Therapeutic E ect on Breast Cancer Cells

    Get PDF
    The peptide-receptor radionuclide therapy (PRRT) is a successful approach for selectively delivering radiation within tumor sites through specific recognition of radiolabeled peptides by overexpressed receptors on cancer cell surfaces. The e cacy of PRRT could be improved by using polymeric radio- and drug- therapy nanoparticles for a concomitant therapeutic e ect on malignant cells. This research aimed to prepare and evaluate, a novel drug and radiation delivery nanosystem based on the 177Lu-labeled polyamidoamine (PAMAM) dendrimer (DN) loaded with paclitaxel (PTX) and functionalized on the surface with the Lys1Lys3(DOTA)-bombesin (BN) peptide for specific targeting to gastrin-releasing peptide receptors (GRPr) overexpressed on breast cancer cells. DN was first conjugated covalently to BN and DOTA (chemical moiety for lutetium-177 complexing) and subsequently loaded with PTX. The characterization by microscopic and spectroscopic techniques, in-vitro drug delivery tests as well as in in-vitro and in-vivo cellular uptake of 177Lu-DOTA-DN(PTX)-BN by T47D breast cancer cells (GRPr-positive), indicated the formation of an improved delivery nanosystem with target-specific recognition by GRPr. Results of the 177Lu-DOTA-DN(PTX)-BN e ect on T47D cell viability (1.3%, compared with 10.9% of 177Lu-DOTA-DN-BN and 14.0% of DOTA-DN-(PTX)-BN) demonstrated the concomitant radiotherapeutic and chemotherapeutic properties of the polymeric nanosystem as a potential agent for the treatment of GRPr-positive tumors.This study was supported by the grant CONACyT-CB-A1S38087 and the International Atomic Energy Agency (CRP-F2264). It was performed as part of the activities of the “Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos, CONACyT”

    Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis

    No full text
    Radiosynovectomy is a technique used to decrease inflammation of the synovial tissue by intraarticular injection of a β-emitting radionuclide, such as 177Lu, which is suitable for radiotherapy due to its decay characteristics. Drug-encapsulating nanoparticles based on poly lactic‑co‑glycolic acid (PLGA) polymer are a suitable option to treat several arthritic diseases, used as anti-inflammatory drugs transporters of such as methotrexate (MTX), which has been widely used in the arthritis treatment (RA), and hyaluronic acid (HA), which specifically binds the CD44 and hyaluronan receptors overexpressed on the inflamed synovial tissue cells. The 1,4,7,10‑Tetraazacyclododecane‑1,4,7,10‑tetraacetic acid (DOTA) was used as complexing agent of Lutetium- 177 for radiotherapy porpoises. The aim of this research was to synthesize 177Lu-DOTA-HA-PLGA(MTX) as a novel, smart drug delivery system with target-specific recognition, potentially useful in radiosynovectomy for local treatment of rheumatoid arthritis. The polymeric nanoparticle system was prepared and chemically characterized. The MTX encapsulation and radiolabelling were performed with suitable characteristics for its in vitro evaluation. The HA-PLGA(MTX) nanoparticle mean diameter was 167.6 nm ± 57.4 with a monomodal and narrow distribution. Spectroscopic techniques demonstrated the effective conjugation of HA and chelating agent DOTA to the polymeric nanosystem. The MTX encapsulation was 95.2% and the loading efficiency was 6%. The radiochemical purity was 96 ± 2%, determined by ITLC. Conclusion: 177Lu-DOTA-HA-PLGA(MTX) was prepared as a biocompatible polymeric PLGA nanoparticle conjugated to HA for specific targeting. The therapeutic nanosystem is based on bi-modal mechanisms using MTX as a disease-modifying antirheumatic drug (DMARD) and 177Lu as a radiotherapeutic component. The 177Lu-DOTA-HA-PLGA(MTX) nanoparticles showed properties suitable for radiosynovectomy and further specific targeted anti-rheumatic therapy.Universidad Autónoma del Estado de México: No. 4288/2017/CI International Atomic Energy Agency: (CRPeF22064, Contract No. 18358 CONACYT: SEP-CONACYT A1-S-3808
    corecore