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A novel targeted drug delivery nanoparticle system based on poly(D,L-lactide-co-glycolide) acid (PLGA) for de-
livery of doxorubicin (DOX) was developed. DOX-PLGA NPs were obtained by the emulsification-solvent evapo-
ration technique. Then, their surface was modified with poly(L-y-glutamic acid) ('y-PGA) and finally conjugated
to modified folic acid (FA) as a targeting ligand. The surface modification and FA conjugation were followed by
UV-Vis and FT-IR spectroscopies. Morphology was observed by TEM/SEM. Particle size, PDI and zeta potential
were measured using DLS studies. Encapsulation and loading efficiencies, and DOX release kinetics were deter-

Keywords:
Foﬁzvadd mined. Specific uptake and cell viability of DOX-PLGA/y-PGA-FA NPs were tested in HeLa cells. Quasi-spherical
PLGA nanoparticles nanoparticles with a particle size lower than 600 nm (DLS) were obtained. Spectroscopic techniques demonstrat-

ed the successful surface modification with 'y-PGA and FA conjugation. Release profile of DOX-PLGA/y-PGA-FA
NPs showed a release of 55.4 4 0.6% after seven days, in an acidic environment. HeLa cells exhibited a decrease
in viability when treated with DOX-PLGA/y-PGA-AF NPs, and cellular uptake was attributed to FA receptor-me-
diated endocytosis. These results suggest that DOX-PLGA/y-PGA-FA NPs are a potential targeted drug carrier for
further applications in cancer therapy.
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polymers that form nanoparticles (solid colloidal particles ranging
from 1 to 1000 nm in size) [5], in which excipients may alter release
time and increase efficacy of active ingredients, being encapsulated in

1. Introduction

Nanotechnology is the science that deals with processes and phe-

nomena that occur at molecular level and nanoscale range [1]. In the
last century, the nanotechnology has had a profound impact and poten-
tial benefits on our society, with applications in nanoelectronics, energy
production, consumer products, biomaterials and nanomedicine.
Nanomedicine comprises the process of diagnosing, treating, curing,
and preventing diseases by using nanomaterials. These processes also
include those used outside the patient, in-line biosensors and surgical
tools, and advanced biomaterials designed for tissue engineering and
to promote tissue repair [2-4]. Among the nanomaterials used in the
treatment of several diseases, an important fraction corresponds to
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the polymeric matrix or directly conjugated to the polymer [6,7].

These novel drug delivery systems are frequently more effective
than their freely-delivered counterparts. In cancer therapy, the advan-
tages of the polymeric nanoparticles include (a) delivery systems that
can extend drug circulation half-life, (b) increased drug concentration
at the tumour site through the passive Enhanced Permeation and Reten-
tion (EPR) effect, and (c) reduced non-specific uptake due to active
targeting [8].

One of the most widely used polymers in the fabrication of polymer-
ic nanoparticles is the copolymer poly(D,L-lactide-co-glycolide) acid
(PLGA), due to its biocompatible and biodegradable properties [7,8].
Furthermore, PLGA exhibits many of the ideal properties of a nanoscale
delivery system, allowing the encapsulation of the drug within the poly-
mer matrix and providing long-term release of the encapsulated agent
[9,10].
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PLGA-based systems have been used in the treatment of cancer,
showing a notable improvement of the therapy [11-15]. Drug release
can be modulated by manipulating several parameters related to PLGA
degradation, such as pH. PLGA can be degraded into shorter chain alco-
hols and acids upon exposure to the acidic microenvironment (approx-
imately pH 5.3) around tumour tissues. Accordingly, drugs can be
distributed around tumour microenvironment [16].

On the other hand, PLGA lacks reactive main or side chains, making
the interaction with biological systems and the modification with bio-
logically-active moieties difficult, restricting its application. Poly(L-y-
glutamic acid) («y-PGA) is an anionic homopolyamide widely used in
nanoparticulate systems because of its hydrophilicity and the improve-
ment in the interaction between polymers (e.g. PLGA) and biological
systems [17-23].

Despite the fact that most nanoparticles are expected to accumulate
in tumours due to the EPR effect, passive approaches suffer from several
limitations. A useful strategy to achieve efficient tumour targeting and
to overcome these limitations is to conjugate carriers with specific li-
gands that recognize and bind to their cognate receptors on the surface
of cancer cells through ligand-receptor interactions that induce recep-
tor-mediated endocytosis and drug release inside the cell [24]. Efficient
binding and internalization requires that receptors are over-expressed
homogenously on target cancer cells with respect to those on normal
cells. The cell receptors density and ligands, three-dimensional architec-
ture of nanoparticles, ligand conjugation chemistry and the types of li-
gands available may affect ligand-receptor interactions, which may be
enhanced by the multivalent nature of the nanoparticle (NP), achieving
a high targeting specificity and delivery efficiency, while avoiding non-
specific binding and possible cell resistance mechanisms [25,26].

One of the most widely studied small molecules as a targeting moi-
ety for the delivery of agents is folic acid (FA). FA receptors are selective-
ly over-expressed in a number of tumour cell types, but present in low
or non-detectable levels in most normal cells [24]. Besides, FA has a
high binding affinity for the folate receptor (Kd = 10~° M), and is
internalised via receptor-mediated endocytosis, making it a good
targeting candidate for nanocarriers delivering an active agent into the
cells [24,26].

The aim of this work was to develop a novel PLGA/y-PGA-based drug
delivery system conjugated with folic acid for delivery of the anticancer
model drug DOX and targeted against folate receptors over-expressed
in some types of cancer cells.

2. Materials and methods
2.1. Materials

Poly(D,L-lactide-co-glycolide) acid terminated had a lactide to
glycolide ratio of 75:25. Polymer molecular weight was 11,300 g/mol.
Poly(vinyl alcohol) (Mowiol®4-88), with a 31,000 g/mol molecular
weight, had 88.0% mol hydrolysis and 10.5% residual content of acetyl.
Poly-L-y-glutamic acid sodium salt had a molecular weight > 750 kDa
(MALLS). Folic acid (HPLC purity >97%). N-(3-Dimethylaminopropyl)-
N’-ethylcarbodiimide hydrochloride (EDC), doxorubicin hydrochloride
98.0-102.0% (HPLC). RPMI-1640 medium, N-Hydroxysulfosuccinimide
sodium salt (NHSS) > 98% (HPLC). These chemicals were all purchased
from Sigma-Aldrich (St. Louis, MO, USA) and used without purification.
Other chemicals and solvents were of reagent grade. The HelLa cell line
was obtained from National Institute of Cancerology, Mexico.

2.2. Methods

2.2.1. Preparation of PLGA nanoparticles

PLGA nanoparticles were prepared using the single emulsification-
solvent evaporation method and PVA [poly(vinyl alcohol)] as stabilizer
[10]. A preliminary study was performed based on a multifactorial two-
tier design. PLGA in acetone solutions (10 mg/mL and 15 mg/mL) and

aqueous PVA solutions (0.25, 0.5, 1, 3, 10 [% w/v]), were evaluated.
The best combination in terms of the smallest particle size and the
highest encapsulation and/or DOX-loading efficiency was chosen to
prepare PLGA nanoparticles. Briefly, 0.66 mL of methanol was mixed
with 0.5 mL of PLGA acetone solution and vortexed. Immediately after,
the solution was slowly dropped over 3.64 mL of aqueous PVA solution
and ultra-sonicated for 10 min. Afterwards, acetone and methanol were
evaporated by rotary vacuum evaporation (65 °C, 40 rpm, 15 min). Fi-
nally, the aqueous solution was centrifuged for 20 min at 4400 rpm.
The supernatant was collected, freeze-dried and stored for further use.

2.2.2. DOX loading and encapsulation efficiency

Once PLGA and PVA concentrations were established, various DOX
concentrations (13.6, 21.7, 32.4, 42.9, 53.4, 104, 241.2 [pug/mL]) were
evaluated in order to find the saturation point of the nanoparticle
system.

The DOX-PLGA nanoparticles were prepared by adding different vol-
umes of 2 mg/mL DOX solution to a solution of PLGA in acetone. The so-
lution was stirred for 25 min. After centrifugation, the supernatant was
ultra-centrifuged at 22000 x g for 10 min. The supernatant was collect-
ed, and the pellet was washed and re-suspended in injectable-grade
water (Fig. 1a). The DOX-loaded amount was determined by UV-Vis
spectroscopy. Absorbance of supernatants was measured at 480 nm, ac-
cording to DOX absorbance. Encapsulation efficiency (%EE) and loading
efficiency (%LE) percentages were calculated as follows:

DOX, added — DOX non encapsulated

07 .
VEE = DOX added

x 100

DOX added — DOX non encapsulated
PLGAqddea

%LE = x 100

2.2.3. Modification of DOX-PLGA nanoparticles with -y-PGA
DOX-PLGA/y-PGA nanoparticles were obtained by the Kuo and Yu
method [19]. Briefly, 10 mg of lyophilised DOX-PLGA nanoparticles,
96 mg (0.50 mmol) of EDC and 23 mg (0.19 mmol) of NHSS were dis-
solved in 15 mL of injectable-grade water by stirring for 4 h. After
that, 5 mg of y-PGA was added and stirred for 4 h at room temperature.
The resulting solution was purified by ultracentrifugation in centrifugal
filters (Amicon® Ultra 30 kDa). DOX-PLGA/y-PGA nanoparticles were
washed and re-suspended in 10 mL of injectable-grade water (Fig. 1b).

2.2.4. Functionalization of DOX-PLGA/~y-PGA nanoparticles with folic acid

11 mg of folic acid (FA, 24.42 umol), 9.2 mg (79.94 umol) of NHSS
and 72 mg (0.37 mmol) of EDC were dissolved in 10 mL of injectable-
grade water. The mixture was stirred for 4 h. After that, 1 mL of
1.5 mg/mL ethylenediamine (EDA, 24.95 mM) solution was added to
the FA solution and stirred for 4 h (Fig. 1c).

Meanwhile, 48 mg (0.25 mmol) of EDC and 15 mg of NHSS were
added to 10 mL of DOX-PLGA/y-PGA solution and stirred for 4 h. After-
wards, FA solution was added to the DOX-PLGA/y-PGA solution and
stirred for 4 h, in order to obtain DOX-PLGA/y-PGA-FA conjugated
nanoparticles. The mixture was purified through centrifugal filters.
DOX-PLGA/y-PGA-FA nanoparticles were washed and suspended in
5 mL of injectable-grade water. Finally, DOX-PLGA/y-PGA-FA nanopar-
ticles were freeze-dried and stored for posterior use (Fig. 1d).

2.2.5. DOX-PLGA/y-PGA-FA nanoparticle stability assay

Freeze-dried nanoparticle samples were stored for sixty days at
room temperature. Posteriorly samples were rehydrated with injectable
water, and size determination was performed. Rehydrated suspension
was stored and particle size was measured after fifteen days. Particle
size determinations were compared to measurement made prior
freeze-drying process.
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Fig. 1. Schematic synthesis of a) DOX-PLGA NPs preparation, b) conjugation of y-PGA to DOX-PLGA NPs (DOX-PLGA/y-PGA NPs), ¢) modification of folic acid and d) DOX-PLGA/y-PGA-FA

NPs.

2.3. Characterization

2.3.1. Nanoparticle size and zeta potential

Particle size (Dynamic light scattering, DLS) and zeta potential were
measured using a Nanotrac analyzer (Nanotrac Wave, Model MN401,
Microtract, FL, USA). Lyophilised samples were analysed using inject-
able-grade water as diluent. All measurements were performed with a
wavelength of 657 nm at 20 °C, current of 15.79 mA, electric field of
14.35 V/cm and sampling time of 128 s.

2.3.2. UV-Vis spectroscopy

Absorption spectra in the 190-800 nm range was obtained with a
Thermo Genesys 10S spectrometer using a 1-cm quartz cuvette. Nano-
particles were measured through UV-Vis analysis to monitor the conju-
gation reactions.

2.3.3. FT-IR spectroscopy

The IR spectra of lyophilised samples were acquired through a
PerkinElmer System 2000 spectrometer with an ATR platform (Pike
Technologies), by applying attenuated total reflection Fourier transform
infrared (ATR-FT-IR) spectroscopy. Resolution 0.4 cm™!, 40 scans, and a
4000-400 cm™ ! operating range.

2.3.4. Transmission electron microscopy (TEM)

The morphology of the nanoparticles was analysed through a Jeol
JEM 2010 HT microscope operating at 200 kV. Samples were prepared
for analysis by evaporating a drop of nanoparticle suspension on a car-
bon-coated TEM copper grid.

2.3.5. Scanning electron microscopy (SEM)
Surface topography was evaluated with a JEOL JSM 6510LV micro-
scope operating at 20 KV, using secondary electron signals. Samples

were sputtered with a thin layer of approximately 15 nm of gold using
a Denton Vacuum DESK IV system.

2.3.6. In vitro drug release kinetics

Released DOX concentration was determined by UV-Vis spectrosco-
py after dialysis. Briefly, 30 mg of either DOX-PLGA-NP or DOX-PLGA/~y-
PGA-FA nanoparticles were dispersed in 2 mL of phosphate buffered sa-
line (PBS) and placed in a dialysis bag (30,000 Da MWCO). Then, the
closed bag was immersed in a 50 mL tube containing 15 mL of PBS as
the release medium at two different pH values (pH 7.4, pH 5.3). The
tube was then agitated (110 rpm) at room temperature. At different
time points (1 h, 3 h, 6 h, 8 h, 20 h, 1 day, 2 days, 3 days, and 7 days),
0.5 mL aliquots were removed for analysis and volume was replaced
with fresh PBS.

2.3.7. Cell culture

Human cervix adenocarcinoma cells (HeLa) were cultured in sterile
folate-free RPMI medium (Sigma-Aldrich, USA) supplemented with bo-
vine faetal serum, penicillin (100 Ul/mL), streptomycin (100 pg/mL),
and amphotericin (0.25 pg/mL). The cells were incubated at 37 °Cin a
humidified environment and 5% CO,.

2.3.8. In vitro cellular uptake study

Nanoparticle uptake by HeLa cells was evaluated. Cells were cul-
tured in a 4-well plate (1 x 10* cells per well). After 24 h, medium
was removed. To test whether nanoparticle uptake occurs via folate re-
ceptors, a group of HeLa cells were pre-treated with 500 L of free folic
acid (11 mg/mL) in order to saturate receptors, and incubated at 37 °C
for 2 h. After receptor saturation, both blocked and non-blocked HeLa
cells were treated with PLGA/y-PGA-FA nanoparticles (675 pg/mL) elut-
ed in PBS for 3 h. Finally, supernatants were collected and measured by
UV-Vis spectroscopy at 280 nm, wavelength corresponding to FA. Up-
take percentage was calculated with regards to PLGA/y-PGA-FA
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nanoparticles in PBS that were not exposed to cells. The baseline was
registered as untreated cells in the same conditions. The experiment
was performed in triplicate.

2.3.9. Cell viability assay

Cell viability was assessed by the crystal violet staining assay. HeLa
cells (4000 cells/well) were seeded on a 96-well plate in 200 pL of fo-
late-free RPMI-1640 medium, and allowed to adhere for 24 h at 37 °C.
Then, the culture medium was replaced with either PLGA/y-PGA-FA
nanoparticles, free DOX, or DOX-PLGA/y-PGA-FA nanoparticles at
equivalent 10 pg/mL DOX concentration. Cells were incubated for
24 h,48 h and 72 h, at 37 °C under 5% CO, atmosphere, in sextuplicate.
After a given time, the crystal violet assay was performed and untreated
cells were considered as 100% of cell viability.

24. Statistical analysis

All data was analysed using OriginPro 8.6 software. Statistical analy-
sis was performed with either one-way or two-way ANOVA and
Bonferroni mean comparison at 0.05 significance level.

3. Results
3.1. Preparation of PLGA nanoparticles

The oil in water (O/W) emulsification-solvent evaporation method
has been described as a relatively simple process to obtain PLGA-nano-
particles, where surfactant and polymer concentrations were important
factors in the final characteristics of the nanoparticles. Based on the
evaluated combinations, it was observed that the higher PVA concentra-
tion, the higher nanoparticle size. Thus, the lowest PVA concentration
(0.25% w/v) was chosen as the optimal surfactant concentration. Once
PVA concentration was established, two PLGA concentrations were
analysed in order to achieve the highest DOX loading and encapsulation
efficiencies. A concentration-dependant behaviour was observed, since
15 mg/mL PLGA concentration had higher efficiencies compared to
10 mg/mL, remaining the lowest nanoparticle size. Finally, the smallest
nanoparticle size was found at PLGA and PVA concentrations of
15 mg/mL and 0.25% (w/v), respectively. Volume mean diameter of
PLGA nanoparticles before functionalization was found to be of 185.6
+ 47.2 nm, showing a wide distribution (polydispersity index, PDI =
0.16) with an apparent monomodal population. Changes in size were
observed by DLS when PLGA nanoparticles were conjugated to y-PGA
and FA (Table 1).

3.2. Encapsulation efficiency (%EE) and loading efficiency (%LE)

PLGA nanoparticles showed a loading efficiency behaviour depen-
dant on polymer and surfactant concentrations. The highest loading ef-
ficiency (0.33% 4 0.01%) was taken as a mandatory parameter of system
saturation, with an encapsulation efficiency of 47.9% + 1.8%, when 104
tg/mL of DOX concentration was tested.

Table 1
Characteristics of different nanoparticle systems (Mean =+ SD, n = 3).

Nanoparticle system Size (nm) PDI Zeta potential (mV)
PLGA-NP 185.6 4+ 47.2 0.16 + 0.05 —10.3 £ 1.37
PLGA/y-PGA 501 4+ 67.3 0.09 + 0.03 —16.4 +1.99
PLGA/y-PGA-FA 537 £ 57.1 0.10 £ 0.07 8.1 +£0.82
DOX-PLGA/y-PGA-FA 597 + 45.0 0.02 + 0.01 14.2 4+ 2.69

3.3. Characterization studies

3.3.1. FT-IR spectroscopy

The FT-IR spectrum of PLGA nanoparticles (Fig. 2a) showed the
peaks corresponding to copolymer characteristic groups: 2942 cm ™!
and 2918 cm™~! (CH bend), 1737 cm™ ' (C=O0 of ester), 1376 cm ™"
(— CH; from lactide), and 1300-1000 cm ™! (ester). A triple-peak ab-
sorption pattern is also present corresponding to bonds between mono-
meric units of lactide-lactide (L-L) at 1453 cm™ !, glycolide-glycolide
(G-G) at 1425 cm™, and lactide-glycolide (L-G) at 1376 cm ™", within
the PLGA polymer chains. Also, characteristic PVA peaks were seen at
3414-3240 cm™ !, belonging to the ~OH group from the alcohol. The
peak at 1737 cm™ ! is due to the presence of non-hydrolysed PVA,
ergo acetylated residues from polyvinylacetate that was not totally con-
verted to PVA. The characteristic peaks from the -OH group could be
used to identify an interaction between PVA and PLGA in the nanoparti-
cle, since similar peaks are present in the PLGA-NP spectrum [10,27].
The surface modification of PLGA-NP by y-PGA (Fig. 2b) can be observed
due to two peaks seen at 1570 cm™ !, corresponding to the asymmetric
stretching vibration of COO- and the N—H bending vibration for amide
I, and 1607 cm ™! corresponding to the symmetric stretching vibration
of amide I present in the 'y-PGA polymer [28].

The PLGA/y-PGA-FA nanoparticle spectrum (Fig. 2c) showed a
band centred at 3299 cm ™!, corresponding to the OH group and in-
creased by the N—H stretching vibration of the ethylenediamine
structure used to modify the folic acid molecule. Also, the pteridine
and phenyl ring skeleton of FA can be observed in the range of
1750-1500 cm™ ! with a broad band at 1600 cm ™! corresponding
to the overlapping of signals from aromatic C=C and C=N stretching
vibrations and amide bond of the homo polyamide y-PGA. Finally, in
the DOX-PLGA/y-PGA-FA nanoparticle spectrum (Fig. 2d), an in-
crease in the intensity of the band at 1757 cm ™! was observed, at-
tributed to the C=O0 stretching vibration from quinone and ketone
groups of the DOX structure as well as the pteridine and phenyl
ring skeleton from FA. These results allowed to confirm the presence
of DOX and FA in PLGA nanoparticles.

3.3.2. UV-Vis spectroscopy

The reaction steps of PLGA/y-PGA-FA nanoparticle formation and
DOX entrapment were followed by UV-Vis spectroscopy. The PLGA
spectrum showed a signal increase in the UV region (200 nm -
400 nm) without defined bands, whereas y-PGA polymer displayed a
well-defined band in the UV region centred at 204 nm (Supplemental
Fig. 1). The conjugation of y-PGA to PLGA nanoparticles showed an in-
tense and broad band centred at 208 nm.

The DOX spectrum exhibited three narrow and well-defined bands
identified at 230 nm, 253 nm and 290 nm, whereas a wide and com-
posed band was observed from 380 nm to 570 nm, centred between
480 and 490 nm (Supplemental Fig. 2). When DOX was encapsulated
into PLGA nanoparticles, the bands at 230 nm, 253 nm, 290 nm, and
480 nm were found in the UV-Vis spectrum of DOX-loaded PLGA nano-
particles, with significant increase on baseline intensity due to particu-
late nature of the samples. Once the surface modification with y-PGA
was performed, the characteristic band of DOX at 480 was observed,
which demonstrated that DOX remained in the modified nanoparticles.
The band at 208 nm, corresponding to the surface modification of PLGA
nanoparticles with y-PGA, was also observed (Fig. 3).

Folic acid analysed by UV-Vis spectroscopy showed two characteris-
tic absorbance bands at 280 nm and 348 nm. The successful FA conjuga-
tion to PLGA/y-PGA nanoparticles was demonstrated by means of the
bands obtained at the same wavelength when the final PLGA/y-PGA-
FA system was analysed (Supplemental Fig. 3). Spectra of DOX-PLGA/
v-PGA-FA nanoparticles and PLGA/y-PGA-FA nanoparticles were indis-
tinguishable. However, signals of folic acid could be clearly seen in both
spectra (Fig. 3).



L. Jaimes-Aguirre et al. / Materials Science and Engineering C 76 (2017) 743-751 747

—

3206 2942

2918
2) PLGA ,

red
1737 1425
1376

3330

b) PLGA/-PGA,,

Transmittance [%]

p 3299
] ©) PLGA/-PGA-FA,

188
1271 1092
T T

NN
3375 2999 Y 288
2923

TIPS TP P TP TP P P |

d) DOX-PLGA/y-PGA-FA,

1456 127V -~——1094
1133

1757— 1189

4000 3500 3000 2500

2000 1500 1000 500

Wavenumber [cm'l]

Fig. 2. FT-IR spectroscopy of a) PLGA NPs, b) PLGA NPs modified with y-PGA, c¢) PLGA/y-PGA NPs functionalised with FA and d) DOX-loaded PLGA/y-PGA-FA NPs.

3.3.3. SEM/TEM microscopy

TEM/SEM images demonstrate the presence of polymeric structures
of PLGA (Fig. 4a), with high density cores and distinctive quasi-spherical
structures (Fig. 4c) with diameters ranging from 10 to 250 nm. Nano-
particle formation was characterized by the maintenance of nanometric
structures even when nanoparticles were DOX-loaded and FA-conju-
gated (Fig. 4b). The appearance of PLGA-NP, PLGA/y-PGA nanoparticles
and PLGA/y-PGA-FA nanoparticles was indistinguishable by electron
microscopy techniques.

3.4. DOX-PLGA/7y-PGA-FA nanoparticle stability assay

DOX-PLGA/vy-PGA-FA nanoparticles showed no significant changes
in particle size posterior freeze-drying, storage, and rehydration
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Fig. 3. DOX-PLGA/vy-PGA-FA nanoparticles formation by UV-Vis spectroscopy.

processes. No significant changes in nanoparticle size were also ob-
served in rehydrated nanoparticles suspension after fifteen days (Sup-
plemental Fig. 4).

3.5. In vitro drug release kinetics

In order to evaluate the potential of PLGA/y-PGA-FA nanoparticles as
a drug carrier, in vitro release of DOX by DOX-PLGA/y-PGA-FA nanopar-
ticles at two different pH values (7.4 and 5.3), and DOX-PLGA nanopar-
ticles at pH 7.4 was evaluated. Fig. 5 displays release profiles of
encapsulated systems. The release kinetics were fixed to a sigmoid
model (Hill equation) to describe the relationship between non-linear
drug release and exposure time in media at determined pH. DOX-
PLGA nanoparticles showed the highest DOX release percentage
throughout the experiment with a burst release in the course of the
first day, with a value 0f 29.91 + 0.22%. The Hill model predicted a max-
imum concentration release of 64 + 4% after the seventh day, with a
mean release time at day 2, approximately. The burst phase was not ob-
served in DOX-PLGA/y-PGA-FA nanoparticles at pH 5.3 or pH 7.4. DOX-
PLGA/y-PGA-FA nanoparticles at pH 7.4 showed DOX released of 12.05%
=+ 0.008% after 7 days, with a maximum drug release of 18.8 + 3.6% ob-
tained by fixing it to the Hill equation. Meanwhile, DOX-PLGA/y-PGA-
FA nanoparticles at pH 5.3 showed a maximum drug release of 55.4 4
0.6% and a mean release time of seven days.

3.6. In vitro cellular uptake study

To demonstrate that folate can mediate the specific uptake of PLGA/
v-PGA-FA nanoparticles via folate receptor, a blocked receptors model
was chosen to conduct the study. Fig. 6 shows comparative PLGA/y-
PGA-FA nanoparticle uptake by cells whose folate receptors were free
or saturated with folic acid. The ANOVA test was conducted to evaluate
the cellular uptake showing a statistical difference between blocked and
non-blocked cells receptors. Non-blocked FA receptors on HeLa cells ex-
hibited a 3.4-fold higher uptake than cell with blocked receptors.
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Fig. 4. SEM images of a) and b) PLGA NPs; c) DOX-PLGA/y-PGA-FA NPs and d) TEM of demonstrative shape found in DOX-PLGA/y-PGA-FA nanoparticles.

3.7. Cell viability assay

The effect of treatment with DOX-PLGA/y-PGA-FA nanoparticles,
PLGA/v-PGA-FA nanoparticles and free DOX on HelLa cells, was evaluat-
ed. ANOVA and Bonferroni tests were used to compare treatments and
exposure times (p < 0.05). As revealed in Fig. 7, the cell viability of free
DOX with regards to DOX-PLGA/y-PGA-FA nanoparticles was lower at
all exposure times. The effect on viability produced by DOX-PLGA/vy-
PGA-FA nanoparticles on HeLa cells was 1.8-fold higher at 72 h com-
pared to 24 h. Additionally, statistical differences among 24 h, 48 h,
and 72 h for PLGA/y-PGA-FA nanoparticles with respect to non-treated
cells, were not found.

4. Discussion

Carbodiimide chemistry has been extensively used as a practical way
to conjugate carboxylic acids to primary amines to obtain covalently-
conjugated systems with more advantages than those materials modi-
fied by adsorption processes. The y-PGA was grafted to carboxylic
acids present on PLGA-NP using a carbodiimide reaction and the sulfo-
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Fig. 5. In vitro release profiles of doxorubicin-loaded PLGA/y-PGA-FA nanoparticles at
pH 5.3 and 7.4, and DOX-PLGA nanoparticles at pH 7.4.

hydroxysuccinimide analogue in order to increase the yield reaction
[26,29]. Prior to FA conjugation to PLGA/y-PGA nanoparticles, the FA
was modified with EDA to obtain FA-NH,, so that there would be cer-
tainty that FA was successfully conjugated through the carboxylic acid.
This modification does not affect the possibility of FA binding to folate
receptors by specific recognition (pteridine group) [30].

PLGA nanoparticles showed a volume mean diameter of 185.6 +
47.2 nm. There was a significant increase in size when y-PGA was an-
chored to PLGA nanoparticles. These changes are due to the linkage of
heavy y-PGA polymer chains that were grafted to the nanoparticle sur-
face. It has been observed that an increase in molecular weight of y-PGA
leads to an increase in particle size attributed to the extensibility of the
hydrophilic 'y-PGA chain, which enhances the swolling capability and
promotes the space occupation of y-PGA into nearby surroundings, ran-
domly expanding on the surface of PLGA nanoparticles and leading to a
high particle size and a broad distribution [19]. Additionally, the shrink-
age of surface y-PGA produces an adherent force among the polymeric
colloids and can form interconnected clusters which could influence the
particle size of PLGA/y-PGA nanoparticles measured by DLS [19,31,32].

Folic acid conjugation to PLGA/y-PGA nanoparticles produced an in-
crease in particle size measured by DLS (537 nm =+ 57.1 nm). This incre-
ment was not as evident as that in the superficial modification of PLGA
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Fig. 6. Cellular uptake of PLGA/y-PGA-FA by blocked FA-receptor HeLa cells and non-
blocked receptor Hela cells. *Significantly difference at the 0.05 level.
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Fig. 7. Cell viability of HeLa cells after exposure to free DOX, DOX-loaded PLGA/y-PGA-FA
NPs and PLGA/y-PGA-FA NPs at 24 h, 48 h and 72 h. *Significantly difference at the 0.05
level.

nanoparticles with «y-PGA, although a high particle size remained. SEM
and TEM images of the DOX-PLGA/y-PGA-FA final nanoparticle system
displayed some regions with cumulus high density cores corresponding
to nanoparticle structures, and the formation of clusters when the nano-
particles were modified with 'y-PGA, was observed. These results corre-
late with the increase in diameter obtained by DLS. DOX-PLGA/y-PGA-
FA nanoparticles displayed particle sizes lower than 250 nm when
they were found isolated by TEM or SEM techniques.

The physicochemical properties of nanoparticles, especially size and
molecular weight, influence the biodistribution. After administration,
small particles (<20-30 nm) are eliminated by renal excretion, whilst
larger particles can be rapidly taken up by the mononuclear phagocytic
system (MPS) cells. Although nanoparticles smaller than 150 nm can es-
cape from the circulation through fenestrations of the endothelial barri-
er. However, in cancer development, tumour growth induces the
development of neovasculature characterized by large fenestrations of
200-780 nm allowing higher nanoparticles passage [33-35]. In this
sense we would expect a significant accumulation of engineered folic
acid-nanoparticles on tumour tissue due to EPR effect, enhanced by in-
teraction multimeric nanoparticles with folate cell receptors.

Freeze-dried formulation as well as the suspension form showed ad-
equate stability for two months and fifteen days, respectively. Samples,
posterior rehydration and size determination, showed no significant
changes in particle size, suggesting that polymeric bulk structure pre-
vents the degradation, nanoparticles fusion or coalescence during both
freeze-drying procedure and the subsequently storage periods
(rehydrated and non-rehydrated samples), and thus decreasing the
need to add additional excipients.

Folic acid has been used in different types of nanoparticles such as
metallic and polymeric nanoparticles. In this research, when FA was
conjugated to PLGA/y-PGA nanoparticles, the zeta potential value
changes from negative to positive, attributable to the modification on
FA with ethylenediamine at the carboxyl group, which produced a loss
of negative charges. Moreover, folic acid chemical structure contains a
pteridine ring with amino groups present which could contribute to
the change toward positive charge [36], so the subsequent binding of
EDA-FA to PLGA/vy-PGA nanoparticles leads to modification of zeta po-
tential value. As soon as folic acid had been conjugated to the nanopar-
ticles, a variation in the value of zeta potential occurs. In all cases, zeta
potential of nanoparticles had negative values, but once folic acid is con-
jugated, the value of negative zeta potential shifts toward zero [37-40].

Surface modification, as well as functionalization of nanoparticles,
was possible to perform even when nanoparticles were drug-loaded,

which indicates that DOX is not involved in the carbodiimide reaction.
It was observed that when nanoparticles were loaded with DOX, zeta
potential value of the final systems PLGA/y-PGA-FA and DOX-PLGA/vy-
PGA-FA was incremented from 8.08 mV to 14.2 mV, respectively, sug-
gesting that a significant fraction of DOX remained at the nanoparticle
surface in a protonated form, influencing the steric hindrance and min-
imizing the events of coalescence that occur among nanoparticles in a
colloidal dispersion. Additionally, superficial DOX was evidenced
throughout carbodiimide reactions, where a loss of approximately 43%
of DOX was observed, due to the long stirring time required for reaction
achievement and thus DOX entrapped superficially in the layer of PVA
stabilizer could be released easily.

The UV-Vis and FT-IR measurement throughout the drug-loading,
surface modification with y-PGA, and FA conjugation procedures also
demonstrated that DOX was loaded efficiently and nanoparticle modifi-
cations were made successfully. On the UV-Vis spectrum, the broad
band found at 208 nm, corresponding to the insertion of y-PGA polymer
to PLGA nanoparticles, represents a redshift after y-PGA attachment,
confirming the chromophore conjugation and effective surface modifi-
cation of nanoparticles. FT-IR analysis showed significant differences
in wavenumber within the range of 1760-1400 cm™!, when PLGA
nanoparticles surface was modified. The FT-IR spectrum of PLGA/vy-
PGA nanoparticles showed two significant peaks at 1570 cm™~! and
1607 cm™ !, due to the carboxylate groups and amide bounds, respec-
tively, present in the polymeric chain of y-PGA, which were not ob-
served in PLGA-NP before modification. The y-PGA polymer spectrum
showed signals corresponding to the mentioned groups. However,
these signals are shifted to larger wavenumbers in PLGA/y-PGA nano-
particles, due to covalent bindings (amide formation) as well as inter-
molecular van der Waals or hydrogen bond interactions between
PLGA nanoparticles and the y-PGA polymer, related to the three-dimen-
sional arrangement of nanoparticle surface. Similar shifts toward higher
energy frequencies were seen by Guan et al. [17] when gold nanoparti-
cles were successfully capped with y-PGA, modifying the surface.

FT-IR and UV-Vis analysis confirmed the conjugation of folic acid to
PLGA/v-PGA nanoparticles. The UV-Vis spectrum showed the distinc-
tive band of folic acid assigned to the m-m* transition of the pteridine
ring around 280 nm, which has been extensively described [41-43]. In
the same way, the FT-IR spectrum of PLGA/y-PGA-FA nanoparticles
showed the characteristic peaks corresponding to the structural units
of the folic acid molecule. Also, the increased intensity of the broad
band at 3299 cm~ ! evidences the presence of hydrogen bonds, attribut-
able to an increase in local concentration of amino groups from EDA
bonded to FA.

The presence of DOX in DOX-PLGA/y-PGA-FA nanoparticles could
also be demonstrated by FT-IR spectroscopy. The increase in the inten-
sity of the band at 1757 cm™ !, corresponding to quinone and ketone
carbonyl groups indicated that the DOX rings are present in the final
nanoparticulate system.

DOX has been previously encapsulated by PLGA nanosystems for
cancer therapy, showing different encapsulation and loading efficiency
percentages over 67% and 0.65%, respectively, depending on the method
and materials used for synthesis [44-48]. DOX-PLGA nanoparticles pre-
pared by the single emulsification-solvent evaporation method and the
use of PVA as stabilizer showed suitable encapsulation and loading effi-
ciency percentages of 47.97 4 1.8% and 0.33 4 0.012%, respectively. The
DOX-PLGA nanoparticle formulation was performed to achieve the
highest loading efficiency and, at the same time, a suitable DOX encap-
sulation along with an appropriate nanoparticle size. The increase in
surfactant and polymer concentrations could allow higher DOX entrap-
ment in function of the PVA layer increase and/or the amount of PLGA
polymer available to entrap the drug. However, these changes may
give rise to larger nanoparticles. Consequently, these factors should be
considered in future experiments in order to optimize and improve
the found results under the tested conditions in this study, by analysing
different PVA and PLGA concentrations.
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Release behaviour of DOX-loaded PLGA nanoparticles exhibited an
initial fast release, followed by a sustained phase, which is a similar
drug release to that previously reported [49-53] at neutral pH. The
first stage is attributed to the amount of DOX entrapped on the PVA
layer, followed by a controlled release as a consequence of PLGA degra-
dation where the cleavage of ester bonds in the polymer chain produces
lactic and glycolic acids, which induced autocatalysis of PLGA due to pH
changes [54], leading to the disintegration of the nanoparticle structure
and promoting the release of DOX. DOX release from DOX-PLGA/y-PGA-
FA responded to acidic conditions (pH 5.3), with a significant increase in
free DOX compared to physiological conditions, attributable to the PLGA
and y-PGA, which are pH-sensitivity polymers [55,56].

DOX-PLGA/v-PGA-FA nanoparticles at pH 7.4 exhibited a lower re-
lease rate than that of DOX-PLGA nanoparticles. It has been seen that
the hydrophilic characteristics of y-PGA on the nanoparticle surface
could allow the penetration of water to the hydrophobic DOX-PLGA nu-
cleus, promoting the erosion and accelerating the release rate. However,
a high molecular weight of y-PGA leads to both a low quantity of the
grafted y-PGA on the particle surface, decreasing the erosion effect pro-
duced by water penetration as well as an increase in the level of chain
entanglement and steric hindrance for releasing DOX. Additionally,
the presence of moieties such as FA on nanoparticle surfaces could re-
duce the release rate of DOX. This is because FA could intensify the
chain entanglements, elongate the diffusion path of DOX, diminish the
concentration gradient, and hinder the release [19,57]. This study was
carried out in saturation conditions and results indicate that the control
on Y-PGA and FA conjugations opens the possibility for controlling the
kinetic release by variating the proportion and molecular weight of
polymer on the nanoparticle surface as well as the concentration of FA.

Hela cells have been demonstrated that they over-express folate re-
ceptors [58,59]. To confirm the receptor specificity of cellular uptake,
HeLa cells were incubated with free folic acid to block or reduce folate
receptors on the surface of cancer cells prior to treatment with PLGA/
v-PGA-FA nanoparticles [24]. FA-treated cells served as a model of
cells with a low number of folate receptors. HeLa cells overexpressing
folate receptors exposed to nanoparticles containing FA as a targeting li-
gand showed a notably higher uptake than those cells pre-treated with
free FA. PLGA/y-PGA-FA nanoparticles also exhibited a non-specific up-
take by non-FA-treated Hela cells. However, results suggest that folic
acid present on the PLGA/y-PGA-FA nanoparticle surface significantly
improves the uptake by Hela cells, supporting a receptor-mediated up-
take mechanism.

The cell viability study was performed on HelLa cells in order to eval-
uate PLGA/y-PGA-FA nanoparticles as a potential drug carrier for cancer
therapy. DOX concentration was homogenised for all treatments. Free
DOX showed the highest cell death percentage at all exposure times
with statistically significant difference (p < 0.05). However, the effect
of DOX-PLGA/y-PGA-FA was more evident after 72 h of treatment.
This could be explained in terms of the DOX available to act against can-
cer cells. First, culture medium must possess an acidic pH, mimicking
the acidic microenvironment around tumours [16,60], where DOX-
PLGA/vy-PGA nanoparticles could start releasing DOX. Additionally,
drug-loaded nanoparticles should also be internalised into cells, where
the acidic conditions of lysosomes could finally degrade the polymeric
system and thus achieve the amount of drug necessary to reach the de-
sirable effect. This pH-dependant behaviour was observed in the profile
release of DOX-PLGA/y-PGA-FA nanoparticles when these were evalu-
ated at pH 5.3.

PLGA/v-PGA-FA nanoparticles did not demonstrate an effect on
HeLa cells. The effect displayed by DOX-PLGA/y-PGA-FA was signifi-
cantly higher compared to PLGA/y-PGA-FA nanoparticles without
DOX, suggesting that the effect observed was due to the presence of
the drug in nanoparticles.

In order to assess their therapeutic potential, DOX-PLGA/y-PGA-FA
nanoparticles need to be tested on in vivo models to elucidate the phys-
iological kinetics of nanoparticles at normal and abnormal conditions

for design protocols for future experiments. PLGA/y-PGA conjugated
to folic acid may provide an alternative therapy for chronic degenerative
diseases such as cancer, where the overexpression of folate receptors of-
fers a therapeutic target.

5. Conclusion

In this study, PLGA nanoparticles were properly prepared. The spec-
troscopy techniques demonstrate the correct surface modification and
the successful conjugation with folic acid, resulting in an active drug
targeting device. The cytotoxic effect against HeLa cells showed a de-
pendence on drug release over the exposure time, due to the pH-sensi-
tive characteristics of DOX-PLGA/y-PGA-FA nanoparticles. The
enhancement of cellular uptake by a receptor-mediated uptake mecha-
nism of nanoparticles into HeLa cells was demonstrated. Therefore, the
PLGA/y-PGA-FA system is a potential target-specific drug delivery sys-
tem with molecular recognition of over-expressed folate receptors.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.msec.2017.03.145.
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