7,015 research outputs found
Isolated photon production in collisions at forward rapidities and high multiplicity events
The production of isolated photons in high multiplicity events is
investigated considering the Color Glass Condensate (CGC) formalism. The
associated cross-section for proton - proton collisions is estimated
considering three distinct solutions of the Balitsky - Kovchegov (BK) equation
and predictions for the normalized photon yield as a function of the
multiplicities of co - produced charged particles are presented. We predict the
increasing of the yield with the multiplicity, with the slope being smaller for
larger rapidities. As the isolated photon production is not affected by the
fragmentation process, a future experimental investigation of this process in
current high energy hadronic colliders is ideal to test the treatment of high
multiplicity events using the CGC formalism, previously applied only for the
production of hadronic final states.Comment: 9 pages, 6 figures. Improved version published in European Physical
Journal
Charge carrier interaction with a purely electronic collective mode: Plasmarons and the infrared response of elemental bismuth
We present a detailed optical study of single crystal bismuth using infrared
reflectivity and ellipsometry. Colossal changes in the plasmon frequency are
observed as a function of temperature due to charge transfer between hole and
electron Fermi pockets. In the optical conductivity, an anomalous temperature
dependent mid-infrared absorption feature is observed. An extended Drude model
analysis reveals that it can be connected to a sharp upturn in the scattering
rate, the frequency of which exactly tracks the temperature dependent plasmon
frequency. We interpret this absorption and increased scattering as the first
direct optical evidence for a charge carrier interaction with a collective mode
of purely electronic origin; here electron-plasmon scattering. The observation
of a \emph{plasmaron} as such is made possible only by the unique coincidence
of various energy scales and exceptional properties of semi-metal bismuth.Comment: 4 pages, 4 figure
Magnetic glassy phase in FeSeTe single crystals
The evolution of the magnetic order in FeSeTe crystals as a function of Se
content was investigated by means of ac/dc magnetometry and muon-spin
spectroscopy. Experimental results and self-consistent DFT calculations both
indicate that muons are implanted in vacant iron-excess sites, where they probe
a local field mainly of dipolar origin, resulting from an antiferromagnetic
(AFM) bicollinear arrangement of iron spins. This long-range AFM phase
disorders progressively with increasing Se content. At the same time all the
tested samples manifest a marked glassy character that vanishes for high Se
contents. The presence of local electronic/compositional inhomogeneities most
likely favours the growth of clusters whose magnetic moment "freezes" at low
temperature. This glassy magnetic phase justifies both the coherent muon
precession seen at short times in the asymmetry data, as well as the glassy
behaviour evidenced by both dc and ac magnetometry.Comment: Approved for publication in J. Phys.: Condens. Matte
Reversible melting and equilibrium phase formation of (Bi,Pb)2Sr2Ca2Cu3O10+d
The decomposition and the reformation of the (Bi,Pb)2Sr2Ca2Cu3O10+d
(?Bi,Pb(2223)?) phase have been investigated in-situ by means of
High-Temperature Neutron Diffraction, both in sintered bulk samples and in
Ag-sheathed monofilamentary tapes. Several decomposition experiments were
performed at various temperatures and under various annealing atmospheres,
under flowing gas as well as in sealed tubes, in order to study the appropriate
conditions for Bi,Pb(2223) formation from the melt. The Bi,Pb(2223) phase was
found to melt incongruently into (Ca,Sr)2CuO3, (Sr,Ca)14Cu24O41 and a
Pb,Bi-rich liquid phase. Phase reformation after melting was successfully
obtained both in bulk samples and Ag-sheathed tapes. The possibility of
crystallising the Bi,Pb(2223) phase from the melt was found to be extremely
sensitive to the temperature and strongly dependent on the Pb losses. The study
of the mass losses due to Pb evaporation was complemented by thermogravimetric
analysis which proved that Pb losses are responsible for moving away from
equilibrium and therefore hinder the reformation of the Bi,Pb(2223) phase from
the melt. Thanks to the full pattern profile refinement, a quantitative phase
analysis was carried out as a function of time and temperature and the role of
the secondary phases was investigated. Lattice distortions and/or transitions
were found to occur at high temperature in Bi,Pb(2223), Bi,Pb(2212),
(Ca,Sr)2CuO3 and (Sr,Ca)14Cu24O41, due to cation diffusion and stoichiometry
changes. The results indicate that it is possible to form the Bi,Pb(2223) phase
from a liquid close to equilibrium conditions, like Bi(2212) and Bi(2201), and
open new unexplored perspectives for high-quality Ag-sheathed Bi,Pb(2223) tape
processing.Comment: 45 pages (including references,figures and captions), 13 figures
Submitted to Supercond. Sci. Techno
Magnetic hour-glass dispersion and its relation to high-temperature superconductivity in iron-tuned FeTeSe
High-temperature superconductivity remains arguably the largest outstanding
enigma of condensed matter physics. The discovery of iron-based
high-temperature superconductors has renewed the importance of understanding
superconductivity in materials susceptible to magnetic order and fluctuations.
Intriguingly they show magnetic fluctuations reminiscent of the superconducting
(SC) cuprates, including a 'resonance' and an 'hour-glass' shaped dispersion,
which provide an opportunity to new insight to the coupling between spin
fluctuations and superconductivity. Here we report inelastic neutron scattering
data on FeTeSe using excess iron concentration to tune
between a SC () and a non-SC () ground states. We find
incommensurate spectra in both samples but discover that in the one that
becomes SC, a constriction towards a commensurate hourglass shape develop well
above . Conversely a spin-gap and concomitant spectral weight shift happen
below . Our results imply that the hourglass shaped dispersion is most
likely a pre-requisite for superconductivity, whereas the spin-gap and shift of
spectral weight are consequences of superconductivity. We explain this
observation by pointing out that an inwards dispersion towards the commensurate
wave-vector is needed for the opening of a spin gap to lower the magnetic
exchange energy and hence provide the necessary condensation energy for the SC
state to emerge
Intrinsic quadrupole moment of the nucleon
We address the question of the intrinsic quadrupole moment Q_0 of the nucleon
in various models. All models give a positive intrinsic quadrupole moment for
the proton. This corresponds to a prolate deformation. We also calculate the
intrinsic quadrupole moment of the Delta(1232). All our models lead to a
negative intrinsic quadrupole moment of the Delta corresponding to an oblate
deformation.Comment: 17 pages, 5 figure
Heavy Flavour Baryons in Hyper Central Model
Heavy flavor baryons containing single and double charm (beauty) quarks with
light flavor combinations are studied using the hyper central description of
the three-body problem. The confinement potential is assumed as hyper central
coulomb plus power potential with power index . The ground state
masses of the heavy flavor, and baryons are computed
for different power index, starting from 0.5 to 2.0. The predicted
masses are found to attain a saturated value in each case of quark combinations
beyond the power index .Comment: 10 pages, 4 figure
Observation of Dirac plasmons in a topological insulator
Plasmons are the quantized collective oscillations of electrons in metals and
doped semiconductors. The plasmons of ordinary, massive electrons are since a
long time basic ingredients of research in plasmonics and in optical
metamaterials. Plasmons of massless Dirac electrons were instead recently
observed in a purely two-dimensional electron system (2DEG)like graphene, and
their properties are promising for new tunable plasmonic metamaterials in the
terahertz and the mid-infrared frequency range. Dirac quasi-particles are known
to exist also in the two-dimensional electron gas which forms at the surface of
topological insulators due to a strong spin-orbit interaction. Therefore,one
may look for their collective excitations by using infrared spectroscopy. Here
we first report evidence of plasmonic excitations in a topological insulator
(Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W
and period 2W to select suitable values of the plasmon wavevector k. Their
lineshape was found to be extremely robust vs. temperature between 6 and 300 K,
as one may expect for the excitations of topological carriers. Moreover, by
changing W and measuring in the terahertz range the plasmonic frequency vP vs.
k we could show, without using any fitting parameter, that the dispersion curve
is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013
On the Dependency of the Electromechanical Response of Rotary MEMS/NEMS on Their Embedded Flexure Hinges’ Geometry
This paper investigates how the electromechanical response of MEMS/NEMS devices changes when the geometrical characteristics of their embedded flexural hinges are modified. The research is dedicated particularly to MEMS/NEMS devices which are actuated by means of rotary comb-drives. The electromechanical behavior of a chosen rotary device is assessed by studying the rotation of the end effector, the motion of the comb-drive mobile fingers, the actuator’s maximum operating voltage, and the stress sustained by the flexure when the flexure’s shape, length, and width change. The results are compared with the behavior of a standard revolute joint. Outcomes demonstrate that a linear flexible beam cannot perfectly replace the revolute joint as it induces a translation that strongly facilitates the pull-in phenomenon and significantly increases the risk of ruptures of the comb-drives. On the other hand, results show how curved beams provide a motion that better resembles the revolute motion, preserving the structural integrity of the device and avoiding the pull-in phenomenon. Finally, results also show that the end effector motion approaches most precisely the revolute motion when a fine tuning of the beam’s length and width is performed
- …