48 research outputs found

    Multicriterion design of frames with constraints on buckling

    Get PDF
    The present paper is devoted to the optimal design of frame structures subjected to static and dynamic loading assuming the material behaviour as elastic perfectly plastic. The relevant optimal design problem is formulated as a minimum volume search problem. The minimum volume structure is determined under suitable constraints on the design variables as well as accounting for different resistance limits: the elastic shakedown limit and the instantaneous collapse limit, considering for each limit condition suitably chosen amplified load combinations. The effects of the dynamic actions are studied on the grounds of the dynamic features of the structure taking into account the structural periods referring to the actual Italian Codes related to the structural analysis and design. The minimum volume design is developed at first as the search for the optimal structure with simultaneous constraints on the elastic shakedown behaviour and on the instantaneous collapse. Moreover, in order to avoid undesired further collapse modes, the structure will be constrained to prevent element buckling. The numerical applications are related to steel frames

    Characteristics and patterns of care of endometrial cancer before and during COVID-19 pandemic

    Get PDF
    Objective: Coronavirus disease 2019 (COVID-19) outbreak has correlated with the disruption of screening activities and diagnostic assessments. Endometrial cancer (EC) is one of the most common gynecological malignancies and it is often detected at an early stage, because it frequently produces symptoms. Here, we aim to investigate the impact of COVID-19 outbreak on patterns of presentation and treatment of EC patients. Methods: This is a retrospective study involving 54 centers in Italy. We evaluated patterns of presentation and treatment of EC patients before (period 1: March 1, 2019 to February 29, 2020) and during (period 2: April 1, 2020 to March 31, 2021) the COVID-19 outbreak. Results: Medical records of 5,164 EC patients have been retrieved: 2,718 and 2,446 women treated in period 1 and period 2, respectively. Surgery was the mainstay of treatment in both periods (p=0.356). Nodal assessment was omitted in 689 (27.3%) and 484 (21.2%) patients treated in period 1 and 2, respectively (p<0.001). While, the prevalence of patients undergoing sentinel node mapping (with or without backup lymphadenectomy) has increased during the COVID-19 pandemic (46.7% in period 1 vs. 52.8% in period 2; p<0.001). Overall, 1,280 (50.4%) and 1,021 (44.7%) patients had no adjuvant therapy in period 1 and 2, respectively (p<0.001). Adjuvant therapy use has increased during COVID-19 pandemic (p<0.001). Conclusion: Our data suggest that the COVID-19 pandemic had a significant impact on the characteristics and patterns of care of EC patients. These findings highlight the need to implement healthcare services during the pandemic

    Practice patterns and 90-day treatment-related morbidity in early-stage cervical cancer

    Get PDF
    To evaluate the impact of the Laparoscopic Approach to Cervical Cancer (LACC) Trial on patterns of care and surgery-related morbidity in early-stage cervical cancer

    A multicriterion design of steel frames with shakedown constraints

    No full text
    The minimum volume design of elastic perfectly plastic steel frames subjected to fixed and cyclic loads is searched in such a way that the structure remains in elastic field in serviceability conditions, while it is subjected to alternating plasticity under very strong cyclic actions, incremental and instantaneous collapse being prevented. The problem is faced on the grounds of a statical and a kinematical approach. The Kuhn–Tucker conditions of the two problems prove that they are each one the dual of the other and provide useful pieces of information about the structural behaviour. Numerical applications confirm the theoretical expectations: optimal designs turn out to be quite light, with stiffness and resistance suitable to completely preserve the structure integrity in serviceability conditions, and suitable to avoid collapse and to allow a great amount of plastic dissipation production under the action of very strong cyclic loads, plastic deformations being null in the cycle

    Shakedown design of structures under dynamic loading

    No full text
    The optimal (minimum volume) design of elastic plastic structures under static and dynamic loads is studied. The minimum volume design is reached accounting for different resistance limits: it is required that the optimal structure simultaneously satisfies the elastic shakedown limit and the instantaneous collapse limit, or alternatively the elastic and the plastic shakedown limits, adopting for each limit condition a suitably chosen load combination and some appropriate load amplifiers. The load combinations are characterized by the presence of fixed loads, quasi-statical cyclic loads and dynamic (seismic) loads. Reference is made to the Italian Code related to structural analysis and design. The Bree diagrams of the optimal structures are determined and plotted. The numerical applications are related to steel frames
    corecore