12 research outputs found

    Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow

    Get PDF
    Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P.falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites’ development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC’s adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.Global Enterprise for Micro-Mechanics and Molecular MedicineUnited States. Dept. of Defense (DOD-ARO (W 911 NF-09-0480))Singapore–MIT Alliance for Research and Technology ((SMART) Fellowship)National Science Foundation (U.S.) (NSF Grant No.1112825

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange

    Forest Vegetation of Easternmost Russia (Russian Far East)

    No full text

    Conclusions

    No full text

    Epidemiological applications of long-term stress in daily life.

    No full text
    The gluon polarisation in the nucleon has been determined by detecting charm production via D0 meson decay to charged K and \u3c0 in polarised muon scattering off a longitudinally polarised deuteron target. The data were taken by the COMPASS Collaboration at CERN between 2002 and 2006 and correspond to an integrated luminosity of 2.8 fb 121. The dominant underlying process of charm production is the photon\u2013gluon fusion to a_(c barc) pair. A leading order QCD approach gives an average gluon polarisation of _x= 120.49\ub10.27(stat)\ub10.11(syst) at a scale \u3bc^2 4813 (GeV/c)^2 and at an average gluon momentum fraction 480.11. The longitudinal cross-section asymmetry for D0 production is presented in bins of the transverse momentum and the energy of the D0 meson
    corecore