24 research outputs found

    A Pandemic Influenza H1N1 Live Vaccine Based on Modified Vaccinia Ankara Is Highly Immunogenic and Protects Mice in Active and Passive Immunizations

    Get PDF
    The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus - a safe poxviral live vector – resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-γ-secreting (IFN-γ) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus.The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza

    Myc Prevents Apoptosis and Enhances Endoreduplication Induced by Paclitaxel

    Get PDF
    BACKGROUND: The role of the MYC oncogene in the apoptotic pathways is not fully understood. MYC has been reported to protect cells from apoptosis activation but also to sensitize cells to apoptotic stimuli. We have previously demonstrated that the down-regulation of Myc protein activates apoptosis in melanoma cells and increases the susceptibility of cells to various antitumoral treatments. Beyond the well-known role in the G1-->S transition, MYC is also involved in the G2-M cell cycle phases regulation. METHODOLOGY/PRINCIPAL FINDINGS: In this study we have investigated how MYC could influence cell survival signalling during G2 and M phases. We used the microtubules damaging agent paclitaxel (PTX), to arrest the cells in the M phase, in a p53 mutated melanoma cell line with modulated Myc level and activity. An overexpression of Myc protein is able to increase endoreduplication favoring the survival of cells exposed to antimitotic poisoning. The PTX-induced endoreduplication is associated in Myc overexpressing cells with a reduced expression of MAD2, essential component of the molecular core of the spindle assembly checkpoint (SAC), indicating an impairment of this checkpoint. In addition, for the first time we have localized Myc protein at the spindle poles (centrosomes) during pro-metaphase in different cell lines. CONCLUSIONS: The presence of Myc at the poles during the prometaphase could be necessary for the Myc-mediated attenuation of the SAC and the subsequent induction of endoreduplication. In addition, our data strongly suggest that the use of taxane in antitumor therapeutic strategies should be rationally based on the molecular profile of the individual tumor by specifically analyzing Myc expression levels

    Vaccines from the Spanish Influenza as a firm foundation for new developments

    No full text
    In 1914, the concept of a prophylactic vaccine, administered to a person before the disease had been contracted, was still controversial. Nevertheless, Almroth Wright tested new pneumococcus vaccines in South Africa, where the incidence of bacterial pneumonia was high amongst workers in the gold mines. He established the use of clinical trials, using around ten thousand workers, both in vaccinated and unvaccinated groups. The two groups were not matched to modern standards. Also, of course, those workers in the control unvaccinated group could not be protected: but some considered a prophylactic vaccine would exacerbate the disease. The vaccines were manufactured to contain a range of pneumococci from different clinical samples, in a serious attempt to match the microbes in the vaccine to the field bacteria. Deaths were averted by the vaccine; and side effects were noted to be minimal. Reexamination of pathology samples from the Spanish Influenza Pandemic showed quite clearly the contribution of pneumococci and streptococci to the mortality of over fifty million people in 1918–1919. The microbe causing this Pandemic was isolated in 1933, and was shown to be a true virus; this finding initiated a huge expanse and interest in influenza virus vaccines, both killed and live. A chance discovery allowed the purification of Influenza M and NP proteins then permitted the production of experimental vaccines. These vaccines were formulated to induce and B and/or T cell responses to the internal proteins. Several of these Universal Influenza Vaccines have been tested in quarantine, and have now reached Phase III trials in the community

    Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cucurbitacin B, an oxygenated tetracyclic triterpenoid compound extracted from the Thai medicinal plant <it>Trichosanthes cucumerina</it> L<it>.</it>, has been reported to have several biological activities including anti-inflammatory, antimicrobial and anticancer. Cucurbitacin B is great of interest because of its biological activity. This agent inhibits growth of various types of human cancer cells lines.</p> <p>Methods</p> <p>In this study, we explored the novel molecular response of cucurbitacin B in human breast cancer cells, MCF-7 and MDA-MB-231. The growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay. The effects of cucurbitacin B on microtubules morphological structure and tubulin polymerization were analyzed using immunofluorescence technique and tubulin polymerization assay kit, respectively. Proteomic analysis was used to identify the target-specific proteins that involved in cucurbitacin B treatment. Some of the differentially expressed genes and protein products were validated by real-time RT-PCR and western blot analysis. Cell cycle distributions and apoptosis were investigated using flow cytometry.</p> <p>Results</p> <p>Cucurbitacin B exhibited strong antiproliferative effects against breast cancer cells in a dose-dependent manner. We show that cucurbitacin B prominently alters the cytoskeletal network of breast cancer cells, inducing rapid morphologic changes and improper polymerization of the microtubule network. Moreover, the results of 2D-PAGE, real-time RT-PCR, and western blot analysis revealed that the expression of nucleophosmin/B23 and c-Myc decreased markedly after cucurbitacin B treatment. Immunofluorescence microscopy showed that cucurbitacin B induced translocation of nucleophosmin/B23 from the nucleolus to nucleoplasm. Treatment with cucurbitacin B resulted in cell cycle arrest at G<sub>2</sub>/M phase and the enhancement of apoptosis.</p> <p>Conclusions</p> <p>Our findings suggest that cucurbitacin B may inhibit the proliferation of human breast cancer cells through disruption of the microtubule network and down-regulation of c-Myc and nucleophosmin/B23 as well as the perturbation in nucleophosmin/B23 trafficking from the nucleolus to nucleoplasm, resulting in G<sub>2</sub>/M arrest.</p

    New therapeutic strategies to treat human cancers expressing mutant p53 proteins

    No full text

    p73 Regulates Primary Cortical Neuron Metabolism: a Global Metabolic Profile

    No full text
    The transcription factor p73 has been demonstrated to play a significant role in survival and differentiation of neuronal stem cells. In this report, by employing comprehensive metabolic profile and mitochondrial bioenergetics analysis, we have explored the metabolic alterations in cortical neurons isolated from p73 N-terminal isoform specific knockout animals. We found that loss of the TAp73 or ΔNp73 triggers selective biochemical changes. In particular, p73 isoforms regulate sphingolipid and phospholipid biochemical pathway signaling. Indeed, sphinganine and sphingosine levels were reduced in p73-depleted cortical neurons, and decreased levels of several membrane phospholipids were also observed. Moreover, in line with the complexity associated with p73 functions, loss of the TAp73 seems to increase glycolysis, whereas on the contrary, loss of ΔNp73 isoform reduces glucose metabolism, indicating an isoform-specific differential effect on glycolysis. These changes in glycolytic flux were not reflected by parallel alterations of mitochondrial respiration, as only a slight increase of mitochondrial maximal respiration was observed in p73-depleted cortical neurons. Overall, our findings reinforce the key role of p73 in regulating cellular metabolism and point out that p73 exerts its functions in neuronal biology at least partially through the regulation of metabolic pathways
    corecore