45 research outputs found

    Methodologies for <i>in vitro</i> and <i>in vivo</i> evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms.

    Get PDF
    Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the &lt;i&gt;in vivo&lt;/i&gt; efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt; performance of anti-infective coatings and materials to prevent fungal biofilm-based infections

    Recombinant human granulocyte macrophage-colony stimulating factor expressed in yeast (sargramostim): A potential ally to combat serious infections

    No full text
    Granulocyte-macrophage-colony stimulating factor (GM-CSF), can direct the activation, proliferation and differentiation of myeloid-derived cells. It is also responsible for maturation and function of professional antigen presenting cells thereby impacting adaptive immune responses, while assisting to maintain epithelial barrier function. GM-CSF in combination with other endogenous cytokines and secondary stimuli, such as tumor necrosis factor can modulate pro-inflammatory monocyte priming via chromatin remodeling and enhanced transcriptional responses, a concept termed \u201ctrained immunity\u201d. An increase in the incidence of opportunistic fungal infections was recently reported in patients with hematological cancers receiving treatment with the BTK inhibitor, Ibrutinib. Tec Kinase BTK is known to influence the expression of GM-CSFR\u3b1 and regulates downstream signaling pathways, suggesting a role for GM-CSF in maintenance of defense against fungal infections in immune competent hosts. Further examination of the potential mechanism(s) of action for naturally occurring GM-CSF and recombinant human GM-CSF (rhu-GM-CSF) expressed in yeast (sargramostim) are reviewed

    In vitro antifungal activity of isavuconazole against 345 mucorales isolates collected at study centers in eight countries.

    No full text
    Item does not contain fulltextAlthough mucormycoses (formerly zygomycoses) are relatively uncommon, they are associated with high mortality and treatment options are limited. Isavuconazole is a novel, water soluble, broad-spectrum azole in clinical development for the treatment of invasive aspergillosis and candidiasis. The objective of this report was to collate data on the in vitro activity of isavuconazole against a collection of 345 diverse mucorales isolates, collected and tested at eight study centers in europe, mexico and North America. Each study center undertook minimum inhibitory concentration (MIC) susceptibility testing of their isolates, according to EUCAST or CLSI guidelines. Across all study centers, isavuconazole exhibited MIC(50 )values of 1-4 mg/l and MIC(90 )values of 4-16 mg/l against the five genera. There were also marked differences in MIC distributions, which could be ascribed to differences in inoculum and/or endpoint. EUCAST guidelines appeared to generate modal MICs 2-fold higher than CLSI. These results confirm that isavuconazole possesses at least partial antifungal activity against mucorales
    corecore