39 research outputs found

    Molecular Subtype Classification Is a Determinant of Non-Sentinel Lymph Node Metastasis in Breast Cancer Patients with Positive Sentinel Lymph Nodes

    Get PDF
    Background: Previous studies suggested that the molecular subtypes were strongly associated with sentinel lymph node (SLN) status. The purpose of this study was to determine whether molecular subtype classification was associated with nonsentinel lymph nodes (NSLN) metastasis in patients with a positive SLN. Methodology and Principal Findings: Between January 2001 and March 2011, a total of 130 patients with a positive SLN were recruited. All these patients underwent a complete axillary lymph node dissection. The univariate and multivariate analyses of NSLN metastasis were performed. In univariate and multivariate analyses, large tumor size, macrometastasis and high tumor grade were all significant risk factors of NSLN metastasis in patients with a positive SLN. In univariate analysis, luminal B subgroup showed higher rate of NSLN metastasis than other subgroup (P = 0.027). When other variables were adjusted in multivariate analysis, the molecular subtype classification was a determinant of NSLN metastasis. Relative to triple negative subgroup, both luminal A (P = 0.047) and luminal B (P = 0.010) subgroups showed a higher risk of NSLN metastasis. Otherwise, HER2 over-expression subgroup did not have a higher risk than triple negative subgroup (P = 0.183). The area under the curve (AUC) value was 0.8095 for the Cambridge model. When molecular subtype classification was added to the Cambridge model, the AUC value was 0.8475. Conclusions: Except for other factors, molecular subtype classification was a determinant of NSLN metastasis in patient

    Molecular Mechanism of a Green-Shifted, pH-Dependent Red Fluorescent Protein mKate Variant

    Get PDF
    Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies
    corecore