64 research outputs found

    Claims of Potential Expansion throughout the U.S. by Invasive Python Species Are Contradicted by Ecological Niche Models

    Get PDF
    BACKGROUND: Recent reports from the United States Geological Survey (USGS) suggested that invasive Burmese pythons in the Everglades may quickly spread into many parts of the U.S. due to putative climatic suitability. Additionally, projected trends of global warming were predicted to significantly increase suitable habitat and promote range expansion by these snakes. However, the ecological limitations of the Burmese python are not known and the possible effects of global warming on the potential expansion of the species are also unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that a predicted continental expansion is unlikely based on the ecology of the organism and the climate of the U.S. Our ecological niche models, which include variables representing climatic extremes as well as averages, indicate that the only suitable habitat in the U.S. for Burmese pythons presently occurs in southern Florida and in extreme southern Texas. Models based on the current distribution of the snake predict suitable habitat in essentially the only region in which the snakes are found in the U.S. Future climate models based on global warming forecasts actually indicate a significant contraction in suitable habitat for Burmese pythons in the U.S. as well as in their native range. CONCLUSIONS/SIGNIFICANCE: The Burmese python is strongly limited to the small area of suitable environmental conditions in the United States it currently inhabits due to the ecological niche preferences of the snake. The ability of the Burmese python to expand further into the U.S. is severely limited by ecological constraints. Global warming is predicted to significantly reduce the area of suitable habitat worldwide, underscoring the potential negative effects of climate change for many species

    Satellite Tracking Reveals Long Distance Coastal Travel and Homing by Translocated Estuarine Crocodiles, Crocodylus porosus

    Get PDF
    Crocodilians have a wide distribution, often in remote areas, are cryptic, secretive and are easily disturbed by human presence. Their capacity for large scale movements is poorly known. Here, we report the first study of post-release movement patterns in translocated adult crocodiles, and the first application of satellite telemetry to a crocodilian. Three large male Crocodylus porosus (3.1–4.5 m) were captured in northern Australia and translocated by helicopter for 56, 99 and 411 km of coastline, the last across Cape York Peninsula from the west coast to the east coast. All crocodiles spent time around their release site before returning rapidly and apparently purposefully to their capture locations. The animal that circumnavigated Cape York Peninsula to return to its capture site, travelled more than 400 km in 20 days, which is the longest homeward travel yet reported for a crocodilian. Such impressive homing ability is significant because translocation has sometimes been used to manage potentially dangerous C. porosus close to human settlement. It is clear that large male estuarine crocodiles can exhibit strong site fidelity, have remarkable navigational skills, and may move long distances following a coastline. These long journeys included impressive daily movements of 10–30 km, often consecutively

    Climate Change and American Bullfrog Invasion: What Could We Expect in South America?

    Get PDF
    BACKGROUND: Biological invasion and climate change pose challenges to biodiversity conservation in the 21(st) century. Invasive species modify ecosystem structure and functioning and climatic changes are likely to produce invasive species' range shifts pushing some populations into protected areas. The American Bullfrog (Lithobates catesbeianus) is one of the hundred worst invasive species in the world. Native from the southeast of USA, it has colonized more than 75% of South America where it has been reported as a highly effective predator, competitor and vector of amphibian diseases. METHODOLOGY/PRINCIPAL FINDINGS: We modeled the potential distribution of the bullfrog in its native range based on different climate models and green-house gases emission scenarios, and projected the results onto South America for the years of 2050 and 2080. We also overlaid projected models onto the South American network of protected areas. Our results indicate a slight decrease in potential suitable area for bullfrog invasion, although protected areas will become more climatically suitable. Therefore, invasion of these sites is forecasted. CONCLUSION/SIGNIFICANCE: We provide new evidence supporting the vulnerability of the Atlantic Forest Biodiversity Hotspot to bullfrog invasion and call attention to optimal future climatic conditions of the Andean-Patagonian forest, eastern Paraguay, and northwestern Bolivia, where invasive populations have not been found yet. We recommend several management and policy strategies to control bullfrog invasion and argue that these would be possible if based on appropriate articulation among government agencies, NGOs, research institutions and civil society

    The importance of Portuguese Continental Shelf Waters to Balearic Shearwaters revealed by aerial census

    Get PDF
    The Balearic shearwater Puffinus mauretanicus is one of the most threatened seabirds in the world. To evaluate the abundance and distribution of Balearic Shearwaters in Portuguese Continental Shelf Waters, during the post-breeding period when migrating birds are outside the Mediterranean Sea, we conducted 5 aerial surveys between 2010 and 2014 (21 survey days covering 62,716 km2). Following a line transect method, observers recorded a total of 181 Balearic Shearwaters sightings. Using Distance sampling software, we estimated an overall species abundance (2010–2014) of 10,182, ranging between 2338 in 2010 and 23,221 individuals in 2012. During the 2012 post-breeding period, the Portuguese Continental Shelf Waters were used by up to 96.8% of the latest migratory population assessment. Considering Balearic Shearwater estimates per sampling block, there was a preference for the North and Center sectors of the Portuguese coast (respectively, 7058 and 1366 individuals) where several SPAs were already designated. We computed the annual and overall habitat predictive models for Balearic Shearwaters using a maximum entropy algorithm on MaxEnt software. In all models, the Balearic shearwater distribution was best predicted by mean chlorophyll concentration. Balearic Shearwaters are mostly present in shallow shelf and coastal waters particularly in the widest portions of the continental shelf. These areas are strongly influenced by upwelling, which concurs with the chlorophyll concentration being the most important predicting variable. Portuguese Continental Shelf Waters are one of the most important post-breeding grounds to the Balearic ShearwaterPortuguese Wildlife Society and projects SafeSea EEA-Grants, FAME (Proj. 2009-1/089) and European Commission’s Life Programme (MarPro NAT/PT/00038). This study was also partly supported by the Portuguese Foundation for Science and Technology (FCT) with Grants SFRH/ BD/30240/2006 to M. Ferreira and SFRH/BD/32841/2006 to P. C. Rodrigues. C. Eira is supported by FCT through CESAM UID/AMB/50017/2013 co-funded by FCT/MEC and FEDER, within PT2020 and Compete 2020 and S. Monteiro is financed by a Grant (BPD/0043/AMB/50017) from UID/AMB/50017/2013. This work was also partially supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by FCT and by ERDF (COMPETE2020). The authors thank observers and airplane pilots who contributed to this workinfo:eu-repo/semantics/publishedVersio

    Assessing Historical Fish Community Composition Using Surveys, Historical Collection Data, and Species Distribution Models

    Get PDF
    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities
    • …
    corecore