2,155 research outputs found
Effects of essential amino acids on food and water intake of rats
This study examined the effects of selected groups of essential amino acids (EAAs), given by gavage, on short-term food and water intake. Amino acid groups were selected on the basis of their common physiologic functions in relation to current hypotheses on the role of amino acids in food intake control, and the quantities given were based on the proportions in 1.5 g of the EAA content of albumin. The complete EAA mixture (1.5 g) suppressed food intake by an average of 60 and 37% during the 1st and 2nd h of feeding, respectively, but had no influence on feeding in the subsequent 12 h. Total daily (14 h) intake was decreased by 9%. With the exception of the aromatic amino acid (Phe + Tyr + Trp, 0.34 g) group, all groups significantly decreased food intake by a comparable magnitude (32%) during the 1st h. In this time period, rats given the EAAs, Arg + Met + Val (0.38 g), and Arg + His + Lys (0.44 g) mixtures increased their water intake, whereas intake by rats given the Phe + Tyr + Trp + Thr (0.46 g) and Ile + Leu + Val (0.45 g) mixtures was unchanged. Thus, the food intake suppression caused by EAAs was not accounted for by an equal effect of its component amino acid groups. As well, food intake suppression by amino acid groups was not explained by increased water consumption, nor was it simply related to the quantity of nitrogen provided by the treatment.published_or_final_versio
A Fully Decentralized Hierarchical Transactive Energy Framework for Charging EVs with Local DERs in Power Distribution Systems
The penetration rates of both electric vehicles (EVs) and distributed energy resources (DERs) have been increasing rapidly as appealing options to address the global problems of carbon emissions and fuel supply issues. However, uncoordinated EV charging activities and DER generation result in operational challenges for power distribution systems. Therefore, this article has developed a hierarchical transactive energy (TE) framework to locally induce and coordinate EV charging demand and DER generation in electric distribution networks. Based on a modified version of the alternating direction method of multipliers (ADMMs), two fully decentralized (DEC) peer-to-peer (P2P) trading models are presented, that is, an hour-ahead market and a 5-min-ahead real-time market. Compared to existing P2P electricity markets, this research represents the first attempt to comprehensively incorporate alternating current (ac) power network constraints into P2P electricity trading. The proposed TE framework not only contributes to mitigating operational challenges of distribution systems, but also benefits both EV owners and DER investors through secured local energy transactions. The privacy of market participants is well preserved since the bid data of each participant are not exposed to others. Comprehensive simulations based on the IEEE 33-node distribution system are conducted to demonstrate the feasibility and effectiveness of the proposed method
Nanofibres in Drug Delivery
In recent years there has been an explosion of interest in the production of nanoscale fibres for drug delivery and tissue engineering. Nanofibres in Drug Delivery aims to outline to new researchers in the field the utility of nanofibres in drug delivery, and to explain to them how to prepare fibres in the laboratory.
The book begins with a brief discussion of the main concepts in pharmaceutical science. The authors then introduce the key techniques that can be used for fibre production and explain briefly the theory behind them. They discuss the experimental implementation of fibre production, starting with the simplest possible set-up and then moving on to consider more complex arrangements. As they do so, they offer advice from their own experience of fibre production, and use examples from current literature to show how each particular type of fibre can be applied to drug delivery. They also consider how fibre production could be moved beyond the research laboratory into industry, discussing regulatory and scale-up aspects
Crystallite size-modulated exciton emission in SnO₂ nanocrystalline films grown by sputtering
Author name used in this publication: Pan, Shu Sheng.Author name used in this publication: Yu, Siu Fung.2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.
Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group.
A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians.
The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role
Selective amyloid-β lowering agents
The amyloid-β peptide (Aβ), implicated in the pathogenesis of Alzheimer's disease (AD), is produced through sequential proteolysis of the Aβ precursor protein (APP) by β- and γ-secretases. Thus, blocking either of these two proteases, directly or indirectly, is potentially worthwhile toward developing AD therapeutics. β-Secretase is a membrane-tethered pepsin-like aspartyl protease suitable for structure-based design, whereas γ-secretase is an unusual, heterotetrameric membrane-embedded aspartyl protease. While γ-secretase inhibitors entered clinical trials first due to their superior pharmacological properties (for example, brain penetration) over β-secretase inhibitors, it has since become clear that γ-secretase inhibitors can cause mechanism-based toxicities owing to interference with the proteolysis of another γ-secretase substrate, the Notch receptor. Strategies for targeting Aβ production at the γ-secretase level without blocking Notch signalling will be discussed. Other strategies utilizing cell-based screening have led to the identification of novel Aβ lowering agents that likewise leave Notch proteolysis intact. The mechanism by which these agents lower Aβ is unknown, but these compounds may ultimately reveal new targets for AD therapeutics
MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.
Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort
Characteristics of Local Health Departments Associated with Implementation of Electronic Health Records and Other Informatics Systems
Objective: Assessing local health departments’ (LHDs’) informatics capacities is important, especially within the context of broader, systems-level health reform. We assessed a nationally representative sample of LHDs’ adoption of information systems and the factors associated with adoption and implementation by examining electronic health records, health information exchange, immunization registry, electronic disease reporting system, and electronic laboratory reporting.
Methods: We used data from the National Association of County and City Health Officials’ 2013 National Profile of LHDs. We performed descriptive statistics and multinomial logistic regression for the five implementation-oriented outcome variables of interest, with three levels of implementation (implemented, plan to implement, and no activity). Independent variables included infrastructural and financial capacity and other characteristics associated with informatics capacity.
Results: Of 505 LHDs that responded to the survey, 69 (13.5%) had implemented health information exchanges, 122 (22.2%) had implemented electronic health records, 245 (47.5%) had implemented electronic laboratory reporting, 368 (73.0%) had implemented an electronic disease reporting system, and 416 (83.8%) had implemented an immunization registry. LHD characteristics associated with health informatics adoption included provision of greater number of clinical services, greater per capita public health expenditures, health information systems specialists on staff, larger population size, decentralized governance system, one or more local boards of health, metropolitan jurisdiction, and top executive with more years in the job.
Conclusion: Many LHDs lack health informatics capacity, particularly in smaller, rural jurisdictions. Cross-jurisdictional sharing, investment in public health informatics infrastructure, and additional training may help address these shortfalls
- …