10,154 research outputs found

    Current distribution of collective thermal depinning of Josephson vortices in naturally stacked Josephson junctions

    Get PDF
    We investigated the thermal-depinning current (I(c)) distribution of Josephson vortices (JVs) in naturally stacked Bi(2)Sr(2)CaCu(2)O(8+delta) intrinsic Jospehson junctions in tesla-range magnetic fields and at different field tilt angles from the in-plane position. The I(c) distribution in the thermal-activation regime contains accurate information on the bias and magnetic-field dependence of the Josephson-vortex pinning potential. In a few-tesla-range magnetic field, JVs in a row in a junction, strongly coupled with each other, are pinned or depinned like a single physical entity at a single pinning center. In the best-aligned in-plane magnetic field, the edge pinning is most relevant and is insensitive to the field strength. In the presence of pancake vortices (PVs) in a slightly tilted field, however, the PV pinning deepens the JV pinning potential linearly with the number of PVs.open1122sciescopu

    Ultimately short ballistic vertical graphene Josephson junctions

    Get PDF
    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale.open113435sciescopu

    Tuning Locality of Pair Coherence in Graphene-based Andreev Interferometers

    Get PDF
    We report on gate-tuned locality of superconductivity-induced phase-coherent magnetoconductance oscillations in a graphene-based Andreev interferometer, consisting of a T-shaped graphene bar in contact with a superconducting Al loop. The conductance oscillations arose from the flux change through the superconducting Al loop, with gate-dependent Fraunhofer-type modulation of the envelope. We confirm a transitional change in the character of the pair coherence, between local and nonlocal, in the same device as the effective length-to-width ratio of the device was modulated by tuning the pair-coherence length xi(T) in the graphene layer.open1133sciescopu

    Complete gate control of supercurrent in graphene p-n junctions

    Get PDF
    In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.open114344sciescopu

    A multimodal network design problem for domestic container transportation with short sea shipping

    Get PDF
    With the growing importance of logistic in a green and environmental friendly way, it is widely accepted that short sea shipping (SSS) is a mean to divert the freight traffic from congested corridor in local communities as well as to reduce environmental costs. It can also relieve the problem of traffic congestion and investment on road construction and maintenance. This paper considers a multimodal transportation model for domestic container cargos, in which the flow of container cargos moving between foreign seaports and domestic cities can be transported via domestic seaports using SSS and inland by truck. We propose a two-level strategy in evaluating the various government policies to encourage or regulate the usage of SSS. While the objective of the freight carriers is to minimize its transportation cost, the government could internalize the external cost and invest on the transportation network with considering the cost to the society. A case study with the Taiwan network is performed to illustrate the benefit and performance of the model.postprintThe 12th World Conference on Transport Research (WCTR), Lisbon, Portugal, 11-15 July 2010

    Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene

    Get PDF
    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.1132Ysciescopu

    The directional hybrid measure of efficiency in data envelopment analysis

    Get PDF
    The efficiency measurement is a subject of great interest. The majority of studies on DEA models have been carried out using radial or non-radial approaches regarding the application of DEA for the efficiency measurement. This paper, based on the directional distance function, proposes a new generalized hybrid measure of efficiency under generalized returns to scale with the existence of both radial and non-radial inputs and outputs. It extends the hybrid measure of efficiency from Tone (2004) to a more general case. The proposed model is not only flexible enough for the decision-maker to adjust the radial and non-radial inputs and outputs to attain the efficiency score but also avoids the computational and interpretive difficulties, thereby giving rise to an important clarification and understanding of the generalized DEA model. Furthermore, several frequently-used DEA models (such as the CCR, BCC, ERM and SBM models) which depend on the radial or non-radial approaches are derived while their results were compared to the ones obtained from this hybrid model. The empirical examples emphasize the consequence of the proposed measure

    Gas hydrate inhibition by perturbation of liquid water structure

    Get PDF
    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.112716Ysciescopu

    Seasonal variations in the aragonite saturation state in the upper open-ocean waters of the North Pacific Ocean

    Get PDF
    Seasonal variability of the aragonite saturation state ((AR)) in the upper (50m and 100m depths) North Pacific Ocean (NPO) was investigated using multiple linear regression (MLR). The MLR algorithm derived from a high-quality carbon data set accurately predicted the (AR) of evaluation data sets (three time series stations and P02 section) with acceptable uncertainty (<0.1(AR)). The algorithm was combined with seasonal climatology data, and the estimated (AR) varied in the range of 0.4-0.6 in the midlatitude western NPO, with the largest variation found for the tropical eastern NPO. These marked variations were largely controlled by seasonal changes in vertical mixing and thermocline depth, both of which determine the degree of entrainment of CO2-rich corrosive waters from deeper depths. Our MLR-based subsurface (AR) climatology is complementary to surface climatology based on pCO(2) measurements.1184Ysciescopu

    CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers

    Get PDF
    Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N-2, CO, and Ar induces changes in their deflections and resonance frequencies. The results of the resonance frequency measurements for the different adsorbed gas molecules are almost identical when the frequency changes are normalized by the molecular weights of the gases. In contrast, the deflection measurements show that only CO2 adsorption induces substantial bending of the MIL53-AAO cantilevers. This selective deflection of the cantilevers is attributed to the strong interactions between CO2 and the hydroxyl groups in MIL-53, which induce structural changes in the MIL-53 layers. Simultaneous measurements of the resonance frequency and the deflection are performed to show that the diffusion of CO2 into the nanoporous MIL-53 layers occurs very rapidly, whereas the binding of CO2 to hydroxyl groups occurs relatively slowly, which indicates that the adsorption of CO2 onto the MIL-53 layers and the desorption of CO2 from the MIL-53 layers are reaction limited.111514Ysciescopu
    corecore