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Abstract Seasonal variability of the aragonite saturation state (ΩAR) in the upper (50m and 100m depths)
North Pacific Ocean (NPO) was investigated using multiple linear regression (MLR). The MLR algorithm
derived from a high-quality carbon data set accurately predicted the ΩAR of evaluation data sets (three
time series stations and P02 section) with acceptable uncertainty (<0.1ΩAR). The algorithm was combined
with seasonal climatology data, and the estimated ΩAR varied in the range of 0.4–0.6 in the midlatitude
western NPO, with the largest variation found for the tropical eastern NPO. These marked variations were
largely controlled by seasonal changes in vertical mixing and thermocline depth, both of which determine
the degree of entrainment of CO2-rich corrosive waters from deeper depths. Our MLR-based subsurface
ΩAR climatology is complementary to surface climatology based on pCO2 measurements.

1. Introduction

The North Pacific Ocean (NPO) is susceptible to ocean acidification (OA, a reduction in seawater pH primarily
due to air-sea exchange of fossil fuel CO2) [Feely et al., 2004, 2008; Sutton et al., 2014]. The saturation state of
aragonite (a metastable form of CaCO3) (ΩAR) has been widely used in assessing the potential risks of OA. The

ΩAR parameter is calculated as Ca2þ½ � CO2�
3

� �
=K�

sp , where K�
sp represents the apparent solubility product

for aragonite. A value of ΩAR< 1 indicates the possibility of dissolution of aragonite shell or skeleton
[Bednaršek et al., 2012, 2014]. It was reported that the 100% aragonite saturation (ΩAR = 1) occurs in the
depth range 100–1000m in the NPO, which is much shallower than in other major basins (e.g., ~2000m in
the North Atlantic Ocean) [Feely et al., 2002, 2004, 2009]. In addition, Orr et al. [2005] showed that increasing
inputs of fossil fuel CO2 will continue to reduce the ΩAR in the NPO. The resulting aragonite undersaturation
may extend to the surface near the end of this century, commencing from the subarctic NPO.

In addition to the input of fossil fuel CO2, seasonal variation in the properties of water masses and
biogeochemical processes can influence the ΩAR level in the upper ocean. The resulting seasonal variation
in ΩAR can be larger than the trend of decreasing ΩAR due to OA within a few decades. Therefore,
seasonal variation in ΩAR needs to be taken into account when assessing the impact of OA. Recent studies
support the importance of seasonal ΩAR variation in upper (<300m) layers of the NPO coastal systems,
using time series data in conjunction with an empirical relation for the interaction between ΩAR and other
hydrographic parameters [Juranek et al., 2009, 2011; Alin et al., 2012]. However, the seasonal variability of
ΩAR for upper (subsurface) open-ocean waters of the NPO has not been fully investigated. Although the
availability of published seasonal and monthly data for ocean carbonate parameters and ΩAR has
enabled the estimation of the contributions of key processes to variations in ΩAR in the NPO, these
products have been restricted to the very surface layer [Lee et al., 2000a, 2006; Yasunaka et al., 2013;
Takahashi et al., 2014]. Indeed, we are aware of only one study showing a difference in subsurface ΩAR

values between summer and winter in one meridional section (25°N–55°N) of the eastern NPO [Feely
et al., 1988]. Practical barriers preventing basin-scale studies include a lack of seasonal data at that scale, and
the difficulty in deriving an empirical algorithm that is suitable for the prediction of ΩAR without loss of
the regionally diverse physical and biogeochemical features and the capacity to assess their effects on ΩAR
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[Bostock et al., 2013]. To overcome these limitations, we derived regional-specific empirical algorithms
using multiple linear regression (MLR) at a spatial scale sufficient to explain local seasonal variations in
ΩAR (equation (1)):

ΩAR;i ¼ α0;i þ α1;i ·X1;i þ α2;i ·X2;i þ ···þ αn;i ·Xn;i (1)

where the series of X and α indicate predictor variables specific to location i and their MLR coefficients. To
map the seasonal variations in ΩAR for the entire NPO, the derived empirical algorithms were combined
with the seasonal data for predictor variables.

2. Data Used

To derive MLR-based empirical algorithms for ΩAR, we used the Pacific Ocean Interior Carbon (PACIFICA;
http://cdiac.ornl.gov/oceans/PACIFICA/) data set collected from 1990 to 2008 for the NPO [Suzuki et al.,
2013]. The ΩAR was estimated from measured total alkalinity (TA) and total inorganic carbon (TIC) data
using thermodynamic constants that are consistent with the calibrated global field data [McElligott et al.,
1998; Wanninkhof et al., 1999; Lee et al., 2000b; Millero et al., 2002]. These include the carbonic acid
dissociation constants of Mehrbach et al. [1973], as refitted in a difference functional form by Dickson and
Millero [1987], and other ancillary constants as suggested by Millero [1995]. The accuracies of the derived
algorithms were evaluated against data collected during the GO-SHIP P02 cruise (2013) [Swift et al., 2014],
and from the Hawaiian Oceanographic Time-series (HOT, 1989–2013) [Dore et al., 2009], and two Japanese
time series stations (K2 and KNOT, 1997–2008) [Wakita et al., 2010, 2013]. These data were not used in
deriving the algorithms but included all seasons. Seasonal data from the World Ocean Atlas (WOA) 2013 at
a resolution of 1° were combined with the empirical MLR algorithms to derive the basin-scale seasonal
distributions of ΩAR at various depths [Garcia et al., 2013]. Months of winter, spring, summer, and fall were
defined as January–March, April–June, July–September, and October–December, respectively [Garcia et al.,
2013]. The WOA data may not capture coastal water properties in sufficient detail because the data are
skewed more toward the open ocean. Therefore, the seasonal variability of ΩAR presented in this study is
only valid for open-ocean waters.

3. Algorithm Development

Previous studies estimating the ΩAR using MLR-based empirical algorithms for the West Coast of the USA
showed that the best combination of predictor variables included temperature, oxygen, and nitrate
concentrations [Juranek et al., 2009, 2011; Alin et al., 2012]. The chosen set of predictor variables is either
directly or indirectly associated with ΩAR. Therefore, we also used these parameters as the initial set of
predictor variables, with the minor modification that potential temperature (θ) and apparent oxygen
utilization (AOU) were used instead of temperature and oxygen. Data collected for depth <50m were
excluded in deriving the algorithms, so as to minimize potential biases introduced by surface ocean
processes, including the air-sea exchange of oxygen. The MLR algorithms were derived using data from
50 to 800m. We chose 800m depth because we would like to investigate seasonal variation in the
100%, 150%, and 200% aragonite saturation horizons (see Text S1 in the supporting information). The
100% aragonite saturation horizon in the NPO usually occurs in the same depth range [Feely et al., 1984,
1988, 2002, 2004, 2012].

To derive region-specific MLR algorithms, we chose a grid size of 5° × 5° because previous studies successfully
predicted the ΩAR at comparable spatial scales [Juranek et al., 2009; Takahashi et al., 2014], and this grid size
achieved the prediction error to accommodate the effect of fossil fuel CO2 in a decadal scale (~0.1ΩAR) [Feely
et al., 2012]. The PACIFICA data set was divided accordingly, and an independent empiricalΩAR algorithmwas
produced for each of the 146 grid cells for which PACIFICA data were available. The best set of predictor
variables was determined based on the known relation between the three preselected parameters and the
ΩAR, because the combinations of (i) θ, nitrate and AOU, (ii) θ and AOU, and (iii) nitrate and AOU produced
the best results with similar ranges in the coefficient of determination (r2> 0.97) and root-mean-square
error (0.10–0.11ΩAR) as an average for all grid cells (see Table S1 in the supporting information).

In principal, temperature should be positively correlated with ΩAR and the MLR coefficients for temperature
should be >0 because an increase in temperature would cause in a thermodynamic increase in ΩAR, and
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increase water column stratification (reduced upwelling). On the other hand, AOU should be inversely
correlated with the ΩAR because as oxygen consumption occurs CO2 is produced, which lowers the ΩAR

[Feely et al., 2002, 2012; Byrne et al., 2010]. This would, thus, lead to negative MLR coefficients for AOU.
Only the combination of θ and AOU met these criteria. Considering all these factors, we determined that
this set of parameters were optimal. All the MLR coefficients and a constant term were then interpolated
for the study area (Figures 1a–1c), based on the mean latitude and longitude of data used to derive these
coefficients in the defined grid cells. Residuals arising from the use of a single algorithm for the entire NPO
were generally 50% greater than those for our region-specific algorithms, indicating that our approach
improved prediction for studying the large-scale ocean.

The MLR algorithms based on the two additive predictor terms (θ and AOU) showed negative
(measured< predicted) residuals in the intermediate depths (150–500m) and positive residuals at the
other depths (50–100m and 600–800m). However, these depth-dependent biases (generally <0.05ΩAR)
remained within the mean uncertainty of the algorithms and inevitable regardless of lower boundary depth.
Inclusion of the θ-AOU interaction term reduced the bias by ~0.03ΩAR. Despite this slight improvement, we
retained the MLR algorithms having only additive terms because (1) the depth-dependent bias from using
only two additive predictor terms was insignificant (less than mean uncertainty) and (2) the interpolated
fields of MLR coefficients appeared to be unnatural when the interaction term was included (see Figure S2 in
the supporting information). Several anomalous spots were identified, and meridional and zonal gradients
differed from the general distribution of physical and chemical ocean properties.

4. Algorithm Evaluations

We evaluated the predictability of the derived algorithms using a number of time series data (HOT, K2, and
KNOT). The empirical algorithm underestimated ΩAR for the HOT station (22.75°N, 158°W) by ~0.07ΩAR as
an average (Figure 2a), which is comparable to the uncertainty of the algorithm. The algorithms more
accurately predicted ΩAR for K2 and KNOT. The mean residual between the measured and predicted ΩAR

for both K2 and KNOT (47°N, 160°E and 44°N, 155°E, respectively) was <0.02 ΩAR (Figures 2b and 2c). Our
test indicated that the derived algorithms can be used for predicting ΩAR for other years in which no
calibration data are available.

Seasonal bias in the empirical algorithms was also evaluated against the same time series data sets (depth
range of 50–800m). The mean differences between the measured and predicted ΩAR for all seasons ranged
from 0.05–0.09, 0.01–0.06, and 0.01–0.04 for the HOT, K2, and KNOT stations, respectively (Figure 2e). The
differences were all within the acceptable range (i.e., ≤ ±0.1 ΩAR) and thus indicated no significant
seasonal bias. The results from the analysis of the HOT station data showed that the largest difference
(least prediction power) occurred during winter and spring. The errors in the wintertime were largest for

Figure 1. Distributions of multiple linear regression (MLR) coefficients for (a) constant (or intercept), (b) potential temperature, and (c) apparent oxygen utilization
(AOU). (d) Station map for the PACIFICA data and time series stations (HOT, K2, and KNOT) used to derive and evaluate the MLR-based algorithms, respectively.
(e–h) Distribution of ΩAR at two depths (50m and 100m) during spring and fall.
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the two Japanese stations, which may be attributed to strong vertical mixing. The predictability of the
derived algorithms for this season was probably reduced because of the strong influence of surface
(<50m) water, data from which were excluded when deriving the algorithms. This effect was more
evident in the higher latitude Japanese stations, as revealed by the wider ranges (sixfold) of seasonal
residuals than observed at the HOT station (less than twofold).

The occurrence of spatial biases was evaluated using data from the zonal P02 line (30°N) (between the east
coast of Japan and the west coast of North America). Data from this zonal line are ideal for testing the
predictability of algorithms for a wide range of physical and biogeochemical properties. In contrast to the
results using the HOT station data, our algorithms overestimated the ΩAR along this trans-Pacific line by
~0.09ΩAR as an average. The degree of overestimation did not exceed the uncertainty of the algorithms,
but residual errors were locally distinct for the upper 300m in the eastern NPO (east of 140°W) and for the
intermediate depths (300–500m) in the western NPO (west of 180°E) (Figure 2d). This error pattern
appeared to be because of the inputs of fossil fuel CO2 [Sabine et al., 2002, 2004; Feely et al., 2012].
However, these negative residuals were not seen in the upper layer of the western section, which also
absorbed fossil fuel CO2. The absence of the negative residuals in the western section suggests that our
algorithms underestimate ΩAR there.

A major weakness of this study is the incapability of the empirical algorithms to account for time-varying inputs
of fossil fuel CO2. The algorithms presented here cannot be used to account for decadal variability of the ΩAR

[Juranek et al., 2009, 2011; Kim et al., 2010]. The data collection periods used to derive independent empirical
algorithms at each defined grid cell were not uniform but differed for all grids. The PACIFICA data used here
covered an 18 year time span, which exceeded the period during which biases caused by the inputs of fossil
fuel CO2 remain smaller than the uncertainty of the empirical algorithms. Therefore, the data for different
grids may represent different concentrations of fossil fuel CO2, which would introduce an unavoidable error
in the ΩAR prediction. It is noteworthy that the effects of fossil fuel CO2 probably disappeared when the
differences among seasons were assessed because the biases were canceled out.

The input of fossil fuel CO2 also influenced the predictability of the algorithms when there was a considerable
time interval between collection of the calibration and evaluation data sets. For example, the PACIFICA

Figure 2. Residuals (ΩAR, MEAS�ΩAR, CALC) between the measured and predicted ΩAR values at the (a) HOT, (b) K2,
(c) KNOT time series stations, and (d) the P02 section occupied in 2013. The yellow and red colors indicate that our
empirical algorithms underestimated ΩAR, whereas the blue color indicates an overestimation. Note that Figure 2a was
only contoured to avoid the data overlap caused by frequent data collection. (e) Seasonal averages of the ΩAR residuals
at the time series stations.
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data near the HOT station were collected in 2006 and thus affected by a greater influence of fossil fuel CO2

compared to the HOT station data collected during the 1990s. The decrease in ΩAR by fossil fuel CO2

would be comparable to ~0.08ΩAR from the 1990s to 2006 at the HOT station (based on a reported
decreasing rate of 0.0076ΩAR per year [Feely et al., 2009]), which contributed to the underestimation by
our algorithm for the HOT station (Figure 2a). Similarly, for the 30°N zonal transect, the earlier collection
(by 9–19 years) of calibration data relative to evaluation data resulted in overestimations by our algorithms
(Figure 2d). Therefore, the evaluation errors included systematic biases arising from the input of fossil fuel
CO2, and our algorithms predicted the ΩAR of the evaluation data sets better than those determined above.

5. Seasonal Variability in ΩAR

The interpolated (region-specific) MLR coefficients were combined with the seasonal climatology data from the
WOA 2013 (1° × 1°) to produce comparable distributions ofΩAR for several depths for which seasonal variability
is large. The resulting distributions largely correspond with the distribution of theΩAR in overlying open-ocean
waters of the NPO [Feely et al., 2004, 2012]. In the spring and summer, the value ofΩAR ranged from 1.2–4.0 and
1.2–3.6 at depths of 50m and 100m, respectively, with the higher values being recorded in the subtropics and
western tropics (Figure 1 and Figure S1 in the supporting information). The warm pool in the western tropical
NPO had the highestΩAR due to thermal effect and a strong stratification (deep thermocline). These predicted
features were consistent with the results reported by Kuchinke et al. [2014]. In contrast, the subarctic region
(south of the Bering Sea and east of Okhotsk Sea) was exposed to the most corrosive open-ocean waters,
and as a result the ΩAR approached undersaturation near 100m depth during the fall and winter [Evans
et al., 2013; Wakita et al., 2013]. In addition to the trend of poleward decrease, the ΩAR east of ~135°W
decreased toward the west coast of North America because of the upwelling in the eastern boundary
current regions [Feely et al., 2008; Gruber et al., 2012; Hauri et al., 2013].

The westward expansion of corrosive water was clearly seen at 100m depth along ~10°N in the eastern tropical
(south of 16°N) NPO; this receives low oxygen and corrosive waters from the Central American coast, where
water ventilation is sporadic and biological productivity is moderately high due to wind-induced seasonal

Figure 3. Seasonal ΩAR anomaly during all seasons at four depths.
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upwelling [Pennington et al., 2006]. This feature is less discernible in the surface layer [Takahashi et al., 2014],
providing strong justification for our MLR-based approach despite the existing pCO2-based surface
climatology of the ΩAR. The MLR-based algorithms are relatively less reliable in the surface layer because
predictor variables like oxygen (or AOU) and nutrient concentrations are affected by air-sea gas exchange, N2

fixation, and atmospheric deposition without there being corresponding change in ΩAR [Juranek et al., 2009,
2011; Kim et al., 2011; Evans et al., 2013]. Therefore, MLR algorithm-based and pCO2-based methods can be
complementary; the combination of both methods better captures seasonal and regional OA dynamics.

Seasonal variations inΩAR were clearly seen in the anomaly plots (each season versus annual mean) (Figure 3).
In the subsurface (50 and 100mdepths), fall and spring showedmore distinct seasonal variations. Therefore, we
focused primarily on the fall and spring distributions ofΩAR. SeasonalΩAR variations were largest at 50m depth
throughout most of the midlatitude region (20–40°N) (Figure 3), where the impact of temperature variation on
ΩAR was greatest (corresponding to the highest MLR coefficients for θ; Figure 1b). However, our algorithms
could not reproduce the large seasonal variation off the West Coast of United States, probably because
of the use of open-ocean climatology (WOA) for predicting seasonal ΩAR. In the remaining midlatitude
regions the values of ΩAR were lower in spring by 0.1–0.2ΩAR than the annual mean values, whereas in
fall the same regions showed positive anomalies (0.2–0.3ΩAR). These seasonal variations at 50m depth
almost disappeared at 100m depth. Three factors can influence the observed variability at 50m depth
[Feely et al., 1988]: (1) temperature-driven change in thermodynamics of carbonate system, (2) vertical
mixing, and (3) biological uptake of CO2. Under the given seasonal temperature variations (only several
degree), the first factor has negligible impact on the ΩAR variation [Feely et al., 1988; Takahashi et al., 2014].
The majority of the midlatitude NPO (except for southern boundary areas like the HOT station) typically
exhibits relatively lower temperatures but higher biological productivity in spring than in fall. If the third
factor was a main driver, the ΩAR values in spring were higher than in fall because of higher biological

Figure 4. Anomaly in the depth of 20°C isotherm during (a) spring and (b) fall. Vertical profiles of seasonal amplitude
(max�min) of ΩAR for 4° × 4° areas centered at (c) 16°N, 114°W and (d) 8°N, 126°W. The black and blue symbols represent
multiple linear regression (MLR)-based predictions andO2-based estimates, respectively. The O2-based estimates were obtained
from the observed total alkalinity (TA) and total inorganic carbon (TIC) values [Key et al., 2004] and the amount of change in TIC
expected due to seasonal amplitude of the O2 concentration based on the ratio of Anderson and Sarmiento [1994].
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drawdown of CO2 in spring than in fall. The intensity of vertical mixing probably dominantly controlled
seasonal variability of ΩAR at 50m depth in the midlatitude NPO region. Cold water temperature in
spring indicates enhanced vertical mixing, which brings corrosive water from depths to this layer, and
thereby lowers ΩAR values at this layer.

A contrasting vertical trend was apparent in the tropical zone (south of 20°N) where seasonal variability was
enhanced at 100m relative to shallower depths. At this depth, the springΩAR values were greater (by 0.2–0.5)
than the annual mean values (positive anomaly in spring) in the areas 10–16°N and 110–160°W (Figure 3e).
This positive anomaly receded further westward. Just south of this zone (2–8°N), the sign of the ΩAR

anomaly was dramatically reversed during spring. The anomaly distributions were reversed during the
transition from spring to fall. During fall season a narrow tongue of seasonally depressed ΩAR values
extended from the eastern NPO along ~12°N, while elevated ΩAR values were largely confined to the
eastern NPO between 2° and 8°N (Figure 3g). These dramatic shifts between seasons, and across the two
tropical zonal bands at 10–16°N and 2–8°N, were consistent with the ΩAR anomalies expected from the
seasonality of the thermocline (Figures 4a and 4b), which can be marked by the depth of the 20°C
isotherm in the eastern tropical NPO [Kessler, 2006]. A deeper thermocline prevents corrosive (low oxygen
content and ΩAR) waters from being upwelled, whereas a rise in the thermocline depth acts in the
opposite direction. In this region, the seasonal variations in ΩAR were consistent to those expected by
the seasonal changes in oxygen concentration (Figures 4c and 4d). In addition, the most negative MLR
coefficients for AOU in this region indicated the influence of corrosive waters (Figure 1c).

The seasonal thermocline variations are closely associated with wind-induced upwelling and downwelling. The
contrast between wind-induced upwelling (north) and downwelling (south) is evident during the fall season
between 2°N and 16°N with ~8°N as a center [Xie and Hsieh, 1995]. However, both of upwelling and
downwelling are considerably reduced in spring, which deepens and shoals springtime thermocline in the
northern and southern regions, respectively (relative to fall). The seasonal thermocline variations can be also
explained by the seasonal fluctuation of North Equatorial Current/Countercurrents (NEC/NECC). The eastward
velocity of NECC (centered at ~5°N) is generally least during March and April [Hsin and Qiu, 2012], which
reduces the eastward transport of warm water and thereby results in a relatively shallower thermocline
during spring. In contrast, the NEC (10–20°N) is weakest during October and November [Kuchinke et al.,
2014]. The influence of thermocline depth (related to wind-induced upwelling/downwelling and ocean
currents) on subsurface ΩAR demonstrates the importance of physical processes on the variability of ΩAR.

6. Conclusions

Regionally varying MLR coefficients (calculated at grid cells) were used to predictΩAR in the NPO. In combination
with climatology of θ and AOU, we established the distributions and seasonal variation in ΩAR in the upper
open-ocean waters. The approach used was not applicable to coastal water. The seasonal amplitude (0.4–0.6)
in ΩAR that we found in the subsurface layer (50–100m) of the western midlatitude and eastern tropical
NPO were larger than the changes in ΩAR that have occurred over recent decades as a consequence of
increased inputs of fossil fuel CO2. In some regions, the seasonal amplitude approached ~1ΩAR (Figures 4c
and 4d). Region-specific MLR algorithm can be particularly useful for studies of open-ocean areas having
varying oceanographic characteristics. The method has greater predictive ability compared with a single MLR
algorithm for the entire basin. In addition, the interpolation of MLR coefficients can avoid issues related to
the boundaries between grid cells because the MLR coefficient changes with location. Fixed boundaries
may not be adequate for studying time-dependent processes, because such boundaries are annually
and seasonally dynamic, and are often difficult to determine. The direct interpolation of measured ΩAR

values instead of MLR coefficients can also avoid the boundary issue but cannot provide any meaningful
information regarding seasonal variability.
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