21 research outputs found

    Non-invasive imaging in the diagnosis of acute viral myocarditis

    Get PDF
    Autopsy series of consecutive cases have demonstrated an incidence of myocarditis at approximately 1–10%; on the contrary, myocarditis is seriously underdiagnosed clinically. In a traditional view, the gold standard has been myocardial biopsy. However, it is generally specific but invasive and less sensitive, mostly because of the focal nature of the disease. Thus, non-invasive approaches to detect myocarditis are necessary. The traditional diagnostic tools are electrocardiography, laboratory values, especially troponin T or I, creatine kinase and echocardiography. For a long period, nuclear technique with indium-111 antimyosin antibody has been used as a diagnostic approach. In the last years, the use of this technique has declined because of radiation exposure and 48-h delay in obtaining imaging after injection to prevent blood pool effect. Thus, a non-invasive diagnostic approach without radiation and online image availability has been awaited. Cardiac magnetic resonance imaging has these promising characteristics. With this technique, it is possible to analyse inflammation, oedema and necrosis in addition to functional parameters such as left ventricular function, regional wall motion and dimensions. Thus, cardiovascular magnetic resonance imaging has emerged as the most important imaging tool in the diagnostic procedure and the review focus on this field. But there are also advances in echocardiography and computer tomography, which are described in detail

    Genetic Basis of Myocarditis: Myth or Reality?

    Get PDF
    n/

    Design and analysis of line transect surveys for primates

    Get PDF
    An erratum to this article can be found at http://dx.doi.org/10.1007/s10764-010-9470-yLine transect surveys are widely used for estimating abundance of primate populations. The method relies on a small number of key assumptions, and if these are not met, substantial bias may occur. For a variety of reasons, primate surveys often do not follow what is generally considered to be best practice, either in survey design or in analysis. The design often comprises too few lines (sometimes just one), subjectively placed or placed along trails, so lacks both randomization and adequate replication. Analysis often involves flawed or inefficient models, and often uses biased estimates of the locations of primate groups relative to the line. We outline the standard method, emphasizing the assumptions underlying the approach. We then consider options for when it is difficult or impossible to meet key assumptions. We explore the performance of these options by simulation, focusing particularly on the analysis of primate group sizes, where many of the variations in survey methods have been developed. We also discuss design issues, field methods, analysis, and potential alternative methodologies for when standard line transect sampling cannot deliver reliable abundance estimates.PostprintPeer reviewe
    corecore