15 research outputs found

    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN

    No full text

    FERMI DETECTION OF gamma-RAY EMISSION FROM THE M2 SOFT X-RAY FLARE ON 2010 JUNE 12 (vol 745, pg 144,2012)

    No full text
    The Geostationary Operational Environmental Satellite (GOES) M2-class solar flare, SOL2010-06-12T00: 57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an similar to 50 s impulsive burst of hard X-and gamma-ray emission up to at least 400 MeV observed by the Fermi Gamma-ray Burst Monitor and Large Area Telescope experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies greater than or similar to 300 MeV with a delay of similar to 10 s from mildly relativistic electrons, but some reached these energies in as little as similar to 3 s. The gamma-ray line fluence from this flare was about 10 times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended >100 MeV emission as has been found for other flares with high-energy gamma-rays

    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN

    No full text
    We report the detection of high-energy gamma-rays from the quiescent Sun with the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope (Fermi) during the first 18 months of the mission. These observations correspond to the recent period of low solar activity when the emission induced by cosmic rays (CRs) is brightest. For the first time, the high statistical significance of the observations allows clear separation of the two components: the point-like emission from the solar disk due to CR cascades in the solar atmosphere and extended emission from the inverse Compton (IC) scattering of CR electrons on solar photons in the heliosphere. The observed integral flux (>= 100 MeV) from the solar disk is (4.6 +/- 0.2inverted right perpendicularstatistical errorinverted left perpendicular(-0.08)(+1.0)inverted right perpendicularsystematic errorinverted left perpendicular) x 10(-7) cm(-2) s(-1), which is similar to 7 times higher than predicted by the "nominal" model of Seckel et al. In contrast, the observed integral flux (>= 100 MeV) of the extended emission from a region of 20 degrees radius centered on the Sun, but excluding the disk itself, (6.8 +/- 0.7[stat.](-0.4)(+0.5)[syst.]) x 10(-7) cm(-2) s(-1), along with the observed spectrum and the angular profile, is in good agreement with the theoretical predictions for the IC emission
    corecore