13 research outputs found
Role of macronutrients in cotton production
Sound nutrition plays a key role in enhancing cotton yield. As cotton undergoes vegetative and reproductive growth at the same time, its nutritional requirements are dissimilar, compared to other field crops. Cotton is grown as an annual crop with an indeterminate growth pattern. The vegetative branching provides a potential fruiting place except under abiotic and biotic stresses. Moreover, cotton has a deep root system with low density of roots in the surface layer of soils where availability of nutrients is high. The rooting system makes cotton crop more dependent on the subsoil for nutrition. A continuous supply of nutrients is required to sustain morphogenesis. The rate of both nutrients absorption and dry matter production increases progressively during the seedling, vegetative, and fruiting periods and peaks near the end of the bloom period. Nitrogen, phosphorus, and potassium are required in large quantities and are limited in many soils. The deficiencies of macro-and micronutrients decrease plant growth and development, and consequently seed cotton yield is reduced. The deficiency of phosphorous (P), calcium (Ca), potassium (K), boron (B), magnesium (Mg), and zinc (Zn) affects fruit production in cotton than vegetative growth, while the deficiencies of nitrogen (N), sulfur (S), molybdenum (Mo), and manganese (Mn) affect equally vegetative and reproductive growth of cotton. A bevy of literature concerning the role of macronutrients in growth and development is presented in the following paragraphs. © Springer Nature Singapore Pte Ltd. 2020. All rights reserved
Selection and genetic transformation of a fast-growing cell line in cotton (Gossypium hirsutum) for transgene expression studies
Development of Virus Resistance Transgenic Cotton Using Cotton Leaf Curl Virus Antisense ßC1 Gene
Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha
Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development
A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha
In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT inhibitor response 1 auxin receptor, single orthologs of each class of auxin response factor (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator auxin/indole-3-acetic acid (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway--chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors
