62 research outputs found
124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results
<p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of <sup>18</sup>F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized C<sub>H</sub>2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaC<sub>H</sub>2), radiolabeled with iodine-124 (<sup>124</sup>I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.</p> <p>Methods</p> <p>HuCC49deltaC<sub>H</sub>2 was radiolabeled with <sup>124</sup>I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of <sup>18</sup>F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.</p> <p>Results</p> <p>At approximately 1 hour after i.v. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, <sup>18</sup>F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.</p> <p>Conclusions</p> <p>On microPET imaging, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while <sup>18</sup>F-FDG failed to demonstrate this. The antigen-directed and cancer-specific <sup>124</sup>I-radiolabled anti-TAG-72 monoclonal antibody conjugate, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.</p
Physical activity and the prevention, reduction, and treatment of alcohol and/or substance use across the lifespan (The PHASE review): protocol for a systematic review
Alcohol and substance use results in significant human and economic cost globally and is associated with economic costs of £21 billion and £15billion within the UK, respectively, and trends for use are not improving. Pharmacological interventions are well researched, but relapse rates across interventions for substance and alcohol use disorders are as high as 60–90%. Physical activity may offer an alternative or adjunct approach to reducing rates of alcohol and substance use that is associated with few adverse side effects, is easily accessible, and is potentially cost-effective. Through psychological, behavioural, and physiological mechanisms, physical activity may offer benefits in the prevention, reduction, and treatment of alcohol and substance use across the lifespan. Whilst physical activity is widely advocated as offering benefit, no systematic review exists of physical activity (in all forms) and its effects on all levels of alcohol and substance use across all ages to help inform policymakers, service providers, and commissioners.Alcohol and substance use results in significant human and economic cost globally and is associated with economic costs of £21 billion and £15billion within the UK, respectively, and trends for use are not improving. Pharmacological interventions are well researched, but relapse rates across interventions for substance and alcohol use disorders are as high as 60–90%. Physical activity may offer an alternative or adjunct approach to reducing rates of alcohol and substance use that is associated with few adverse side effects, is easily accessible, and is potentially cost-effective. Through psychological, behavioural, and physiological mechanisms, physical activity may offer benefits in the prevention, reduction, and treatment of alcohol and substance use across the lifespan. Whilst physical activity is widely advocated as offering benefit, no systematic review exists of physical activity (in all forms) and its effects on all levels of alcohol and substance use across all ages to help inform policymakers, service providers, and commissioners
The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast
Both position-effect variegation (PEV) in Drosophila and telomeric position-effect in yeast (TPE) result from the mosaic inactivation of genes relocated next to a block of centromeric heterochromatin or next to telomeres. In many aspects, these phenomena are analogous to other epigenetic silencing mechanisms, such as the control of homeotic gene clusters, X-chromosome inactivation and imprinting in mammals, and mating-type control in yeast. Dominant mutations that suppress or enhance PEV are thought to encode either chromatin proteins or factors that directly affect chromatin structure. We have identified an insertional mutation in Drosophila that enhances PEV and reduces transcription of the gene in the eye-antenna imaginal disc. The gene corresponds to that encoding the transcriptional regulator RPD3 in yeast, and to a human histone deacetylase. In yeast, RRD3-deletion strains show enhanced TPE, suggesting a conserved role of the histone deacetylase RPD3 in counteracting genomic silencing. This function of RPD3, which is in contrast to the general correlation between histone acetylation and increased transcription, might be due to a specialized chromatin structure at silenced loci
- …