15 research outputs found

    Virtual reality for sensorimotor rehabilitation post stroke: design principles and evidence

    No full text
    n the recent years, the use of virtual reality (VR) to enhance motor skills of persons with activity and participation restriction due to disease or injury has been become an important area of research. In this chapter, we describe the design of such VR systems and their underlying principles, such as experience-dependent neuroplasticity and motor learning. Further, psychological constructs related to motivation including salience, goal setting, and rewards are commonly utilized in VR to optimize motivation during rehabilitation activities. Hence, virtually simulated activities are considered to be ideal for (1) the delivery of specifi c feedback, (2) the a bility to perform large volumes of training, and (3) the presentation of precisely calibrated diffi culty levels, which maintain a high level of challenge throughout long training sessions. These underlying principles are contrasted with a growing body of research comparing the effi cacy of VR with traditionally presented rehabilitation activities in persons with stroke that demonstrate comparable or better outcomes for VR. In addition, a small body of literature has utilized direct assays of neuroplasticity to evaluate the effects of virtual rehabilitation interventions in persons with stroke. Promising developments and fi ndings also arise from the use of off-the-s helf video game systems for virtual rehabilitation purposes and the integration of VR with robots and brain-computer interfaces. Several challenges limiting the translation of virtual rehabilitation into routine rehabilitation practice need to be addressed but the fi eld continues to hold promise to answer key issues faced by modern healthcare.info:eu-repo/semantics/publishedVersio

    Clinical application of rehabilitation technologies in children undergoing neurorehabilitation

    Full text link
    The application of rehabilitation technologies in children with neurological impairments appears promising as these systems can induce repetitive goal-directed movements to complement conventional treatments. Characteristics of robotic-supported and computer-assisted training are in line with principles of motor learning and include high numbers of repetitions, prolonged training durations, and online feedback about the patient’s active participation. When experienced therapists apply these technologies, they can be considered a rather safe and in combination with virtual realities a motivating supplementary approach. Therapists might have to take into account that there might be some factors that are different when applying such technologies to children with congenital versus acquired neurological lesions. Currently, clinical guidelines on how to apply such technologies are missing, and clinical evidence considering the effectiveness of such technologies has just started to commence in pediatric neurorehabilitation. Experienced therapists formulated recommendations that might be useful to those with less experience on how to apply some of these systems to train the lower and upper extremity intensively and playfully. Finally, suggestions are made on how these technologies could be integrated into the clinical path
    corecore