16 research outputs found

    A Case for Lorentzian Relativity

    Get PDF
    The Lorentz transformation (the LT) is explained by changes occurring in the wave characteristics of matter as it changes inertial frame. This explanation is akin to that favoured by Lorentz, but informed by later insights, due primarily to de Broglie, regarding the underlying unity of matter and radiation. To show the nature of these changes, a massive particle is modelled as a standing wave in three dimensions. As the particle moves, the standing wave becomes a travelling wave having two factors. One is a carrier wave displaying the dilated frequency and contracted ellipsoidal form described by the LT, while the other (identified as the de Broglie wave) is a modulation defining the dephasing of the carrier wave (and thus the failure of simultaneity) in the direction of travel. The superluminality of the de Broglie wave is thus explained, as are several other mysterious features of the optical behaviour of matter, including the physical meaning of the Schrödinger Eqn. and the relevance to scattering processes of the de Broglie wave number. Consideration is given to what this Lorentzian approach to relativity might mean for the possible existence of a preferred frame and the origin of the observed Minkowski metric

    Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish

    No full text

    Observation of two jet production in deep inelastic scattering at HERA

    No full text
    A sample of events with two distinct jets, in addition to the proton remnant, has been identified in deep inelastic, neutral current ep interactions recorded at HERA by the ZEUS experiment. For these events, the mass of the hadronic system ranges from 40 to 260 GeV. The salient features of the observed jet production agree with the predictions of higher order QCD
    corecore