457 research outputs found

    An integrated and multi-purpose microscope for the characterization of atomically thin optoelectronic devices

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.Optoelectronic devices based on graphene and other two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs) are the focus of wide research interest. They can be the key to improving bandwidths in telecommunications, capacity in data storage, new features in consumer electronics, safety devices and medical equipment. The characterization these emerging atomically thin materials and devices strongly relies on a set of measurements involving both optical and electronic instrumentation ranging from scanning photocurrent mapping to Raman and photoluminescence (PL) spectroscopy. Current state-of-the-art commercial instruments offer the ability to characterize individual properties of these materials with no option for the in situ characterization of a wide enough range of complementary optical and electrical properties. Presently, the requirement to switch atomically-thin materials from one system to another often radically affects the properties of these uniquely sensitive materials through atmospheric contamination. Here, we present an integrated, multi-purpose instrument dedicated to the optical and electrical characterization of devices based on 2D materials which is able to perform low frequency electrical measurements, scanning photocurrent mapping, Raman, absorption and PL spectroscopy in one single set-up with full control over the polarization and wavelength of light. We characterize this apparatus by performing multiple measurements on graphene, transition metal dichalcogenides (TMDs) and Si. The performance and resolution is equivalent to commercially available instruments with the significant added value of being a compact, multi-purpose unit. Our design offers a versatile solution to face the challenges imposed by the advent of atomically-thin materials in optoelectronic devices

    Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes.

    Get PDF
    Alternating current electroluminescent technology allows the fabrication of large area, flat and flexible lights. Presently the maximum size of a continuous panel is limited by the high resistivity of available transparent electrode materials causing a visible gradient of brightness. Here, we demonstrate that the use of the best known transparent conductor FeCl3-intercalated few-layer graphene boosts the brightness of electroluminescent devices by 49% compared to pristine graphene. Intensity gradients observed for high aspect ratio devices are undetectable when using these highly conductive electrodes. Flat lights on polymer substrates are found to be resilient to repeated and flexural strains.S. Russo and M.F. Craciun acknoweldge financial support from EPSRC (Grant no. EP/J000396/1, EP/K017160/1, EP/K010050/1, EPG036101/1, EP/M001024/1, EPM002438/1) and from the Leverhulme Trust (Research grant title Quantum Drums)

    Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this record.Graphene-based photodetectors have demonstrated mechanical flexibility, large operating bandwidth, and broadband spectral response. However, their linear dynamic range (LDR) is limited by graphene’s intrinsic hot-carrier dynamics, which causes deviation from a linear photoresponse at low incident powers. At the same time, multiplication of hot carriers causes the photoactive region to be smeared over distances of a few micrometers, limiting the use of graphene in high-resolution applications. We present a novel method for engineering photoactive junctions in FeCl3-intercalated graphene using laser irradiation. Photocurrent measured at these planar junctions shows an extraordinary linear response with an LDR value at least 4500 times larger than that of other graphene devices (44 dB) while maintaining high stability against environmental contamination without the need for encapsulation. The observed photoresponse is purely photovoltaic, demonstrating complete quenching of hot-carrier effects. These results pave the way toward the design of ultrathin photodetectors with unprecedented LDR for high-definition imaging and sensing.S.R. and M.F.C. acknowledge financial support from the Engineering and Physical Sciences Research Council (grant nos. EP/J000396/1, EP/K017160/1, EP/K010050/1, EP/G036101/1, EP/M001024/1, and EP/M002438/1), from the Royal Society’s International Exchanges Scheme 2012/R3 and 2013/R2, and from the European Commission (FP7-ICT-2013-613024-GRASP)

    High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.We demonstrate high efficiency Cooper pair splitting in a graphene-based device. We utilize a true Y-shape design effectively placing the splitting channels closer together: graphene is used as the central superconducting electrode as well as QD output channels, unlike previous designs where a conventional superconductor was used with tunnel barriers to the quantum dots (QD) of a different material. Superconductivity in graphene is induced via the proximity effect, thus resulting in both a large measured superconducting gap Δ=0.5\Delta=0.5meV, and a long coherence length ξ=200\xi=200nm. The graphene-graphene, flat, two dimensional, superconductor-QD interface lowers the capacitance of the quantum dots, thus increasing the charging energy ECE_C (in contrast to previous devices). As a result we measure a visibility of up to 96% and a splitting efficiency of up to 62%. Finally, the devices utilize graphene grown by chemical vapor deposition allowing for a standardized device design with potential for increased complexity.I. V. B. acknowledges the JSPS International Research Fellowship. M. Y. and S. T. acknowledge financial support by Grant-in-Aid for Scientific Research S (No. 26220710) and Grant-in-Aid for Scientific Research A (No. 26247050). M. Y. acknowledges financial support by Grant-in-Aid for Scientific Research on Innovative Areas ”Science of Atomic Layers” and Canon foundation. S. T. acknowledges financial support by MEXT project for Developing Innovation Systems and JST Strategic International Cooperative Program. S. R. and M. F. C. acknowledge financial support from EPSRC (Grant EP/J000396/1, EP/K017160, EP/K010050/1, EP/G036101/1, EP/M002438/1, EP/M001024/1), from the Royal Society Travel Exchange Grants 2012 and 2013 and from the Leverhulme Trust

    Large-area functionalized CVD graphene for work function matched transparent electrodes

    Get PDF
    PublishedArticleThe efficiency of flexible photovoltaic and organic light emitting devices is heavily dependent on the availability of flexible and transparent conductors with at least a similar workfunction to that of Indium Tin Oxide. Here we present the first study of the work function of large area (up to 9 cm2) FeCl3 intercalated graphene grown by chemical vapour deposition on Nickel, and demonstrate values as large as 5.1 eV. Upon intercalation, a charge density per graphene layer of 5 ⋅ 1013 ± 5 ⋅ 1012 cm−2 is attained, making this material an attractive platform for the study of plasmonic excitations in the infrared wavelength spectrum of interest to the telecommunication industry. Finally, we demonstrate the potential of this material for flexible electronics in a transparent circuit on a polyethylene naphthalate substrate.EPSRCRoyal Society international Exchanges Schem

    Fast and Highly Sensitive Ionic-Polymer-Gated WS2 -Graphene Photodetectors

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.The combination of graphene with semiconductor materials in heterostructure photodetectors enables amplified detection of femtowatt light signals using micrometer-scale electronic devices. Presently, long-lived charge traps limit the speed of such detectors, and impractical strategies, e.g., the use of large gate-voltage pulses, have been employed to achieve bandwidths suitable for applications such as video-frame-rate imaging. Here, atomically thin graphene-WS2 heterostructure photodetectors encapsulated in an ionic polymer are reported, which are uniquely able to operate at bandwidths up to 1.5 kHz whilst maintaining internal gain as large as 10(6) . Highly mobile ions and the nanometer-scale Debye length of the ionic polymer are used to screen charge traps and tune the Fermi level of the graphene over an unprecedented range at the interface with WS2 . Responsivity R = 10(6) A W(-1) and detectivity D* = 3.8 × 10(11) Jones are observed, approaching that of single-photon counters. The combination of both high responsivity and fast response times makes these photodetectors suitable for video-frame-rate imaging applications.J.D.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1 ). S.F.R acknowledges financial support from the Higher Committee for Education Development in Iraq (HCED). S.R. and M.F.C. acknowledge financial support from EPSRC (Grant No. EP/J000396/1, EP/K017160/1, EP/K010050/1, EP/G036101/1, EP/M001024/1, and EP/M002438/1) and from Royal Society International Exchanges Scheme 2016/R1

    Pregnancy postponement and childlessness leads to chronic hypervascularity of the breasts and cancer risk

    Get PDF
    Epidemiologists have established that women with small families, and particularly nulliparae, are prone to develop breast cancer later in life. We report that physiological mammary hypervascularity may be an intermediate reason against the background that breast-core vascularity is normal in pregnancy but pathological in the vascularisation of cancer. We examined breast ‘core’ vascularity in nulliparae during their potential reproductive life and in parous women after their last birth but before their menopause. Fifty clinically normal pre-menopausal non-pregnant women (100 breasts) were studied daily for one ‘luteal positive’ menstrual cycle. Their parity history varied from zero to five babies. Under controlled domestic conditions each wore a special electronic thermometric bra to automatically record breast ‘core’ temperature changes as a measure of mammary tissue blood flow. In the nulliparae there was a rise of breast vascularity throughout reproductive life. In the parous women, a year or so after each birth, breast vascularity was reset at a lower level than before the pregnancy; thereafter, as in nulliparae, there was progressive increase in mammary vascularity until the menopause

    Pair Production of small Black Holes in Heterotic String Theories

    Full text link
    We study pair production of small BPS BH's in heterotic strings compactified on tori and in the FHSV model. After recalling the identification of small BH's in the perturbative BPS spectrum, we compute the tree-level amplitudes for processes initiated by massless vector bosons or gravitons. We then analyze the resulting cross sections in terms of energy and angular distributions. Finally, we briefly comment on scenari with large extra dimensions and on generalizations of our results to non-BPS, non-extremal and rotating BH's.Comment: 33 page

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag
    corecore