39 research outputs found

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    Methane drizzle on Titan

    Full text link
    Saturn's moon Titan shows landscapes with fluvial features(1) suggestive of hydrology based on liquid methane. Recent efforts in understanding Titan's methane hydrological cycle have focused on occasional cloud outbursts near the south pole(2-4) or cloud streaks at southern mid-latitudes(5,6) and the mechanisms of their formation. It is not known, however, if the clouds produce rain or if there are also non-convective clouds, as predicted by several models(7-11). Here we show that the in situ data on the methane concentration and temperature profile in Titan's troposphere point to the presence of layered optically thin stratiform clouds. The data indicate an upper methane ice cloud and a lower, barely visible, liquid methane-nitrogen cloud, with a gap in between. The lower, liquid, cloud produces drizzle that reaches the surface. These non-convective methane clouds are quasi-permanent features supported by the global atmospheric circulation, indicating that methane precipitation occurs wherever there is slow upward motion. This drizzle is a persistent component of Titan's methane hydrological cycle and, by wetting the surface on a global scale, plays an active role in the surface geology of Titan.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62668/1/nature04948.pd

    AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance

    Get PDF

    Huygens' surface science package

    No full text
    The design and performance of the Surface Science Package (SSP) on the Huygens probe are discussed. This instrument consists of nine separate sensors that are designed to measure a wide range of physical properties of Titan's lower atmosphere, surface, and sub-surface. By measuring a number of physical properties of the surface it is expected that the SSP will be able to constrain the inferred composition and structure of the moon's near-surface environment. Although the SSP is primarily designed to sense properties of the surface, some of its sensors will also make measurements of the atmosphere along the probe's entry path and will complement the data gathered by other experiments on the Huygens probe
    corecore