59 research outputs found
A time-variable, phase-dependent emission line in the X-ray spectrum of the isolated neutron star RXJ0822–4300
RX J0822−4300 is the central compact object associated with the Puppis A supernova remnant. Previous X-ray observations suggested RX J0822−4300 to be a young neutron star with a weak dipole field and a peculiar surface temperature distribution dominated by two antipodal spots with different temperatures and sizes. An emission line at 0.8 keV was also detected. We performed a very deep (130-ks) observation with XMM–Newton, which allowed us to study in detail the phase-resolved properties of RX J0822−4300. Our new data confirm the existence of a narrow spectral feature, best modelled as an emission line, only seen in the ‘soft’-phase interval – when the cooler region is best aligned to the line of sight. Surprisingly, comparison of our recent observations to the older ones yields evidence for a variation in the emission-line component, which can be modelled as a decrease in the central energy from ∼0.80 keV in 2001 to ∼0.73 keV in 2009–10. The line could be generated via cyclotron scattering of thermal photons in an optically-thin layer of gas, or, alternatively, it could originate in low-rate accretion by a debris disc. In any case, a variation in energy, pointing to a variation of the magnetic field in the line-emitting region, cannot be easily accounted for
A variable absorption feature in the X-ray spectrum of a magnetar
Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly
rotating, isolated neutron stars that sporadically undergo episodes of
long-term flux enhancement (outbursts) generally accompanied by the emission of
short bursts of hard X-rays. This behaviour can be understood in the magnetar
model, according to which these sources are mainly powered by their own
magnetic energy. This is supported by the fact that the magnetic fields
inferred from several observed properties of AXPs and SGRs are greater than -
or at the high end of the range of - those of radio pulsars. In the peculiar
case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing
parameters, whereas a strong field has been proposed to reside in the stellar
interior and in multipole components on the surface. Here we show that the
X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which
depend strongly on the star's rotational phase. This line is interpreted as a
proton cyclotron feature and its energy implies a magnetic field ranging from
2E14 gauss to more than 1E15 gauss.Comment: Nature, 500, 312 (including Supplementary Information
Multifrequency Strategies for the Identification of Gamma-Ray Sources
More than half the sources in the Third EGRET (3EG) catalog have no firmly
established counterparts at other wavelengths and are unidentified. Some of
these unidentified sources have remained a mystery since the first surveys of
the gamma-ray sky with the COS-B satellite. The unidentified sources generally
have large error circles, and finding counterparts has often been a challenging
job. A multiwavelength approach, using X-ray, optical, and radio data, is often
needed to understand the nature of these sources. This chapter reviews the
technique of identification of EGRET sources using multiwavelength studies of
the gamma-ray fields.Comment: 35 pages, 22 figures. Chapter prepared for the book "Cosmic Gamma-ray
Sources", edited by K.S. Cheng and G.E. Romero, to be published by Kluwer
Academic Press, 2004. For complete article and higher resolution figures, go
to: http://www.astro.columbia.edu/~muk/mukherjee_multiwave.pd
Entangled-State Cycles of Atomic Collective-Spin States
We study quantum trajectories of collective atomic spin states of
effective two-level atoms driven with laser and cavity fields. We show that
interesting ``entangled-state cycles'' arise probabilistically when the (Raman)
transition rates between the two atomic levels are set equal. For odd (even)
, there are () possible cycles. During each cycle the
-qubit state switches, with each cavity photon emission, between the states
, where is a Dicke state in a rotated
collective basis. The quantum number (), which distinguishes the
particular cycle, is determined by the photon counting record and varies
randomly from one trajectory to the next. For even it is also possible,
under the same conditions, to prepare probabilistically (but in steady state)
the Dicke state , i.e., an -qubit state with excitations,
which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure
Past, Present, and Future X-Ray and Gamma-Ray Missions
X- and -ray astronomy began in the early sixties of the last century with balloons flights, sounding rocket experiment and satellites. Long before space satellite detected X- and -rays emitted by cosmic sources, scientists had known that the Universe should be producing these photons. In this chapter we provided an overview of past and present missions that has made the X- and -ray astronomy an integral part of astronomical research, and prospects of future developments
- …
