771 research outputs found

    Rationale, application and clinical qualification for NT-proBNP as a surrogate end point in pivotal clinical trials in patients with AL amyloidosis

    Get PDF
    Amyloid light-chain (LC) amyloidosis (AL amyloidosis) is a rare and fatal disease for which there are no approved therapies. In patients with AL amyloidosis, LC aggregates progressively accumulate in organs, resulting in organ failure that is particularly lethal when the heart is involved. A significant obstacle in the development of treatments for patients with AL amyloidosis, as well as for those with any disease that is rare, severe and heterogeneous, has been satisfying traditional clinical trial end points (for example, overall survival or progression-free survival). It is for this reason that many organizations, including the United States Food and Drug Administration through its Safety and Innovation Act Accelerated Approval pathway, have recognized the need for biomarkers as surrogate end points. The international AL amyloidosis expert community is in agreement that the N-terminal fragment of the pro-brain natriuretic peptide (NT-proBNP) is analytically validated and clinically qualified as a biomarker for use as a surrogate end point for survival in patients with AL amyloidosis. Underlying this consensus is the demonstration that NT-proBNP is an indicator of cardiac response in all interventional studies in which it has been assessed, despite differences in patient population, treatment type and treatment schedule. Furthermore, NT-proBNP expression is directly modulated by amyloidogenic LC-elicited signal transduction pathways in cardiomyocytes. The use of NT-proBNP will greatly facilitate the development of targeted therapies for AL amyloidosis. Here, we review the data supporting the use of NT-proBNP, a biomarker that is analytically validated, clinically qualified, directly modulated by LC and universally accepted by AL amyloidosis specialists, as a surrogate end point for survival.Leukemia advance online publication, 2 August 2016; doi:10.1038/leu.2016.191

    KDIGO Controversies Conference on onco-nephrology: understanding kidney impairment and solid-organ malignancies, and managing kidney cancer

    Get PDF
    The association between kidney disease and cancer is multifaceted and complex. Persons with chronic kidney disease (CKD) have an increased incidence of cancer, and both cancer and cancer treatments can cause impaired kidney function. Renal issues in the setting of malignancy can worsen patient outcomes and diminish the adequacy of anticancer treatments. In addition, the oncology treatment landscape is changing rapidly, and data on tolerability of novel therapies in patients with CKD are often lacking. Caring for oncology patients has become more specialized and interdisciplinary, currently requiring collaboration among specialists in nephrology, medical oncology, critical care, clinical pharmacology/pharmacy, and palliative care, in addition to surgeons and urologists. To identify key management issues in nephrology relevant to patients with malignancy, KDIGO (Kidney Disease: Improving Global Outcomes) assembled a global panel of multidisciplinary clinical and scientific expertise for a controversies conference on onco-nephrology in December 2018. This report covers issues related to kidney impairment and solid organ malignancies as well as management and treatment of kidney cancer. Knowledge gaps, areas of controversy, and research priorities are described

    Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production

    Get PDF
    Despite recent therapeutic advancements, multiple myeloma (MM) remains incurable and new therapies are needed, especially for the treatment of elderly and relapsed/refractory patients. We have screened a panel of 100 off-patent licensed oral drugs for anti-myeloma activity and identified niclosamide, an anti-helminthic. Niclosamide, at clinically achievable non-toxic concentrations, killed MM cell lines and primary MM cells as efficiently as or better than standard chemotherapy and existing anti-myeloma drugs individually or in combinations, with little impact on normal donor cells. Cell death was associated with markers of both apoptosis and autophagy. Importantly, niclosamide rapidly reduced free light chain (FLC) production by MM cell lines and primary MM. FLCs are a major cause of renal impairment in MM patients and light chain amyloid and FLC reduction is associated with reversal of tissue damage. Our data indicate that niclosamides anti-MM activity was mediated through the mitochondria with rapid loss of mitochondrial membrane potential, uncoupling of oxidative phosphorylation and production of mitochondrial superoxide. Niclosamide also modulated the nuclear factor-κB and STAT3 pathways in MM cells. In conclusion, our data indicate that MM cells can be selectively targeted using niclosamide while also reducing FLC secretion. Importantly, niclosamide is widely used at these concentrations with minimal toxicity

    Birtamimab plus standard of care in light-chain amyloidosis: the phase 3 randomized placebo-controlled VITAL trial

    Get PDF
    Amyloid light-chain (AL) amyloidosis is a rare, typically fatal disease characterized by the accumulation of misfolded immunoglobulin light chains (LCs). Birtamimab is an investigational humanized monoclonal antibody designed to neutralize toxic LC aggregates and deplete insoluble organ-deposited amyloid via macrophage-induced phagocytosis. VITAL was a phase 3 randomized, double-blind, placebo-controlled clinical trial assessing the efficacy and safety of birtamimab + standard of care (SOC) in 260 newly diagnosed, treatment-naive patients with AL amyloidosis. Patients received 24 mg/kg IV birtamimab + SOC or placebo + SOC every 28 days. The primary composite end point was the time to all-cause mortality (ACM) or centrally adjudicated cardiac hospitalization ≥91 days after the first study drug infusion. The trial was terminated early after an interim futility analysis; there was no significant difference in the primary composite end point (hazard ratio [HR], 0.826; 95% confidence interval [CI], 0.574-1.189; log-rank P = .303). A post hoc analysis of patients with Mayo stage IV AL amyloidosis, those at the highest risk of early mortality, showed significant improvement in the time to ACM with birtamimab at month 9 (HR, 0.413; 95% CI, 0.191-0.895; log-rank P = .021). At month 9, 74% of patients with Mayo stage IV AL amyloidosis treated with birtamimab and 49% of those given placebo survived. Overall, the rates of treatment-emergent adverse events (TEAEs) and serious TEAEs were generally similar between treatment arms. A confirmatory phase 3 randomized, double-blind, placebo-controlled clinical trial of birtamimab in patients with Mayo stage IV AL amyloidosis (AFFIRM-AL; NCT04973137) is currently enrolling. The VITAL trial was registered at www.clinicaltrials.gov as #NCT02312206

    Thermodynamic State Ensemble Models of cis-Regulation

    Get PDF
    A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1) the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2) the binding constants that describe the affinity of the protein–protein and protein–DNA interactions that occur in each state, and (3) whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence
    corecore