27 research outputs found

    Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification

    Get PDF
    Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship

    Two-fluid Modeling of Geldart A Particles in Gas-solid Bubbling Fluidized Bed: Assessment of Drag Models and Solid Viscosity Correlations

    No full text
    In this work the influences of solid viscosity and the way to scale-down traditional drag models on the predicted hydrodynamics of Geldart A particles in a lab-scale gas-solid bubbling fluidized bed are investigated. To evaluate the effects of drag models, the modified Gibilaro et al. drag model (constant correction factor) and the EMMS drag model (non-constant correction factor) are tested. And the influences of solid viscosity are assessed by considering the empirical model proposed by Gidaspow et al. (1997, Turbulence, Viscosity and Numerical Simulation of FCC Particles in CFB. Fluidization and Fluid-particle Systems, AIChE Annual Meeting, Los Angeles, 58-62) and the models based on kinetic theory of granular flow (KTGF) with or without frictional stress. The resulting hydrodynamics by incorporating the different combinations of the drag model and solid viscosity model into two-fluid model (TFM) simulations are compared with the experimental data of Zhu et al. (2008, Detailed Measurements of Flow Structure inside a Dense Gas-Solids Fluidized Bed." Powder Technological 180: 339-349). The simulation results show that the predicted hydrodynamics closely depends on the setting of solid viscosity. When solid viscosity is calculated from the empirical model of Gidaspow et al., both drag models can reasonably predict the radial solid concentration profiles and particle velocity profiles. When the KTGF viscosity model without frictional stress is adopted, the EMMS drag model significantly overestimates the bed expansion, whereas the modified Gibilaro et al. drag model can still give acceptable radial solid concentration profiles but over-estimate particle upwards and downwards velocity. When KTGF viscosity model with frictional stress is chosen, both drag models predict the occurrence of slugging. At this time, the particle velocity profiles predicted by EMMS drag model are still in well agreement with the experimental data, but the bed expansion is under-estimated

    CFD modeling the hydrodynamics of binary particle mixture in pseudo-2D bubbling fluidized bed: Effect of model parameters

    No full text
    The hydrodynamics of binary coal-sand mixture in a pseudo-2D rectangular bubbling fluidized bed (0.385 m x 0.005 m x 0.128 m) was simulated using the multi-fluid Eulerian model incorporating the kinetic theory of granular flow. Parametric studies of the boundary wall condition, particle-particle restitution coefficient, friction packing limit, as well as transport equation for granular temperature were performed to investigate their influences on the predicted mixing/segregation behavior. The CFD simulation results demonstrated that the predicted mixing behavior was closely related to the expression for granular temperature transport equation and specularity coefficient. When the full transport equation for granular temperature was adopted, the predicted mixing degree decreased with the increase of specularity coefficient. And the best agreement between simulation results and experimental data was achieved when specularity coefficient was equal to 1.0. Nevertheless, when the algebraic transport equation for granular temperature was adopted, the system was always predicted in well-mixing rather than segregation state. Under the full transport equation for granular temperature and the no slip boundary wall condition, the predicted mixing degree decreased with the increase of the particle-particle restitution coefficient and frictional packing limit. The supplementary simulations indicated that for the considered gas-solid system there exist a critical bed thickness larger than which the system was in well-mixing state and the simulation results were independent from the investigated parameters. The hydrodynamic analysis indicated that the reduction of bubble size and the solid axial movement could be the mechanism responsible for the occurrence of axial segregation. (C) 2016 Elsevier B.V. All rights reserved.</p

    Discrete and continuum modeling of granular flow in silo discharge

    No full text
    Granular material discharge from a flat-bottomed silo has been simulated by using continuum modeling and a three-dimensional discrete-element method (DEM). The predictive abilities of three commonly used frictional viscosity models (Schaeffer, S-S, and mu(I)) were evaluated by comparing them with the DEM data. The funnel-flow pattern (type C) and the semi-mass-flow pattern (type B) that was predicted by DEM simulations can be represented when the Schaeffer or mu(1) model is used, whereas the S-S model gives a consistent type-B flow pattern. All three models over-estimate the discharge rate compared with the DEM. The profiles of the solids volume fraction and the vertical velocity above the outlet show that the larger discharge rates given by the Schaeffer and mu(I) model result from an over-estimation of volume fraction, whereas the deviation in the S-S model stems from the failure to predict a solid vertical velocity and a volume fraction. (C) 2017 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved

    Prediction of solids residence time distribution in cross-flow bubbling fluidized bed

    No full text
    Cross-flow bubbling fluidized beds (BFBs) have been widely used in dual fluidized bed systems such as chemical and heat looping. Understanding the residence characteristics of solids in such system is important for better design and optimization of reactors. Previously we experimentally measured the residence time distributions (RTDs) of sands in a cross-flow rectangular BFB by using coal particles as tracer. A computational investigation of solids RTD using multi-fluid Eulerian method combined with the species transport equation showed that the RTD of sands could be correctly represented by that of coal particles, and the simulation results well agreed with experimental data. Parametric studies demonstrated that, under the considered operation conditions, the influence of tracer injection time period on the predicted solid residence times was nearly ignorable. Simulation results revealed that in the investigated cross-flow BFB the solids RTD is closely related to solids inventory and solids flux. Through proper data processing, it was found that the descending part of solids RTD profile can be uniquely fitted by an empirical exponential function. A semi-empirical approach was thus developed and further validated, for the first time in the literature, to predict the entire profile of solids RID, in which the ascending part of solids RTD profile is obtained through CFD simulation whereas the descending part is given by the fitted empirical exponential function. (C) 2017 Elsevier B.V. All rights reserved.</p

    Discrete and continuum modeling of granular flow in silo discharge

    No full text
    Granular material discharge from a flat-bottomed silo has been simulated by using continuum modeling and a three-dimensional discrete-element method (DEM). The predictive abilities of three commonly used frictional viscosity models (Schaeffer, S-S, and mu(I)) were evaluated by comparing them with the DEM data. The funnel-flow pattern (type C) and the semi-mass-flow pattern (type B) that was predicted by DEM simulations can be represented when the Schaeffer or mu(1) model is used, whereas the S-S model gives a consistent type-B flow pattern. All three models over-estimate the discharge rate compared with the DEM. The profiles of the solids volume fraction and the vertical velocity above the outlet show that the larger discharge rates given by the Schaeffer and mu(I) model result from an over-estimation of volume fraction, whereas the deviation in the S-S model stems from the failure to predict a solid vertical velocity and a volume fraction. (C) 2017 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved

    Two-fluid modeling of Geldart A particles in gas-solid micro-fluidized beds

    No full text
    The fluidization behavior of Geldart A particles in a gas-solid micro-fluidized bed was investigated by Eulerian-Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior. (C) 2014 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved
    corecore