3,002 research outputs found

    Present state of knowledge of the upper atmosphere: An assessment report; processes that control ozone and other climatically important trace gases

    Get PDF
    The state of knowledge of the upper atmosphere was assessed as of January 1986. The physical, chemical, and radiative processes which control the spatial and temporal distribution of ozone in the atmosphere; the predicted magnitude of ozone perturbations and climate changes for a variety of trace gas scenarios; and the ozone and temperature data used to detect the presence or absence of a long term trend were discussed. This assessment report was written by a small group of NASA scientists, was peer reviewed, and is based primarily on the comprehensive international assessment document entitled Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, to be published as the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 16

    Why do planetary wave number one and the ozone transport vary annually in the Northern Hemisphere and semiannually in the Southern Hemisphere

    Get PDF
    Evidence is cited from these studies and those of others showing the different nature of the yearly variations of the middle atmospheres of the Northern and Southern Hemispheres. The Northern Hemisphere middle atmosphere is shown to be characterized by annual variations in planetary wave number one amplitude and the accompanying ozone transports. The Southern Hemisphere middle atmosphere is shown to be characterized by semiannual variations in the amplitude of planetary wave number one and the accompanying ozone transports. The amplitude of wave number two in both hemispheres appears to vary annually. Examination is made of the nature of the planetary wave forcing in both hemispheres as well as the planetary wave propagation characteristics in both hemispheres in an attempt to better understand this

    Optimal control of a leaking qubit

    Full text link
    Physical implementations of quantum bits can contain coherent transitions to energetically close non-qubit states. In particular, for anharmonic oscillator systems such as the superconducting phase qubit and the transmon a two-level approximation is insufficient. We apply optimal control theory to the envelope of a resonant Rabi pulse in a qubit in the presence of a single, weakly off-resonant leakage level. The gate error of a spin flip operation reduces by orders of magnitude compared to simple pulse shapes. Near-perfect gates can be achieved for any pulse duration longer than an intrinsic limit given by the nonlinearity. The pulses can be understood as composite sequences that refocus the leakage transition. We also discuss ways to improve the pulse shapes.Comment: 4 pages, 2 figure

    Local Phonon Density of States in an Elastic Substrate

    Full text link
    The local, eigenfunction-weighted acoustic phonon density of states (DOS) tensor is calculated for a model substrate consisting of a semi-infinite isotropic elastic continuum with a stress-free surface. On the surface, the local DOS is proportional to the square of the frequency, as for the three-dimensional Debye model, but with a constant of proportionality that is considerably enhanced compared to the Debye value, a consequence of the Rayleigh surface modes. The local DOS tensor at the surface is also anisotropic, as expected. Inside the substrate the local DOS is both spatially anisotropic and non-quadratic in frequency. However, at large depths, the local DOS approaches the isotropic Debye value. The results are applied to a Si substrate.Comment: 7 pages, 2 figures, RevTe

    Environments of Redshift Survey Compact Groups of Galaxies

    Get PDF
    Redshift Survey Compact Groups (RSCGs) are tight knots of N >= 3 galaxies selected from the CfA2+SSRS2 redshift survey. The selection is based on physical extent and association in redshift space alone. We measured 300 new redshifts of fainter galaxies within 1 h^{-1} Mpc of 14 RSCGs to explore the relationship between RSCGs and their environments. 13 of 14 RSCGs are embedded in overdense regions of redshift space. The systems range from a loose group of 5 members to an Abell cluster. The remaining group, RSCG 64, appears isolated. RSCGs are isolated and distinct from their surroundings to varying degrees, as are the Hickson Compact Groups. Among the 13 embedded RSCGs, 3 are distinct from their general environments (RSCG 9, RSCG 11 and RSCG 85).Comment: 35 pages, including 10 figures and 5 tables, accepted for publication in the Astronomical Journa

    Global atmospheric circulation statistics: Four year averages

    Get PDF
    Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity

    Earth matter density uncertainty in atmospheric neutrino oscillations

    Full text link
    That muon neutrinos νμ\nu_{\mu} oscillating into the mixture of tau neutrinos ντ\nu_{\tau} and sterile neutrinos νs\nu_{s} has been studied to explain the atmospheric νμ\nu_{\mu} disappearance. In this scenario, the effect of Earth matter is a key to determine the fraction of νs\nu_{s}. Considering that the Earth matter density has uncertainty and this uncertainty has significant effects in some neutrino oscillation cases, such as the CP violation in very long baseline neutrino oscillations and the day-night asymmetry for solar neutrinos, we study the effects caused by this uncertainty in the above atmospheric νμ\nu_{\mu} oscillation scenario. We find that this uncertainty seems to have no significant effects and that the previous fitting results need not to be modified fortunately.Comment: 7 pages, 1 figure, to appear in Phys. Rev.
    • …
    corecore