21 research outputs found

    Conservation of Mediterranean oak woodlands: understorey dynamics under different shrub management

    Get PDF
    The effect of experimental disturbances on the dynamics of a shrub community was studied on a ‘Montado’ ecosystem, in southern Portugal. The evolution of the community physiognomy, composition and diversity were monitored after shrub clearing followed by biomass removal, deposition on soil surface and incorporation with the soil, over a 9-year period. Maximum shrub density was recorded in the first year after the disturbances, excepting in mulched plots which showed the greatest number of individuals 1 year later. The increment of shrub leaf biomass was very fast in the first 3 years, whereas wood production was slower but occurred along the whole study period. At the end of the study, leaf and wood biomass was still significantly lower than in the predisturbance situation. The variation pattern of leaf area index was similar to that of leaf biomass. The evolution of total plant cover and diversity was similar across treatments. The highest species richness and diversity were recorded 2 years after cutting, decreasing afterwards with the increasing dominance of shrubs. Thus it seems likely that, although a 9 year period is too short for these communities to reach steady equilibrium, they are very resistant and resilient to disturbances, as regeneration was fast and vegetation dynamics was not influenced by differences among treatments. We can conclude that shrub clearing promotes biodiversity and the time of permanence of shrub patches depends on the particular goal we want to achieve

    Conservation of Mediterranean oak woodlands: understorey dynamics under different shrub management

    Get PDF
    The effect of experimental disturbances on the dynamics of a shrub community was studied on a ‘Montado’ ecosystem, in southern Portugal. The evolution of the community physiognomy, composition and diversity were monitored after shrub clearing followed by biomass removal, deposition on soil surface and incorporation with the soil, over a 9-year period. Maximum shrub density was recorded in the first year after the disturbances, excepting in mulched plots which showed the greatest number of individuals 1 year later. The increment of shrub leaf biomass was very fast in the first 3 years, whereas wood production was slower but occurred along the whole study period. At the end of the study, leaf and wood biomass was still significantly lower than in the predisturbance situation. The variation pattern of leaf area index was similar to that of leaf biomass. The evolution of total plant cover and diversity was similar across treatments. The highest species richness and diversity were recorded 2 years after cutting, decreasing afterwards with the increasing dominance of shrubs. Thus it seems likely that, although a 9 year period is too short for these communities to reach steady equilibrium, they are very resistant and resilient to disturbances, as regeneration was fast and vegetation dynamics was not influenced by differences among treatments. We can conclude that shrub clearing promotes biodiversity and the time of permanence of shrub patches depends on the particular goal we want to achieve

    Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple

    No full text
    The apple dwarfing rootstock ‘Malling9’ (‘M9’) has been used worldwide both to reduce scion vigour and as a genetic source for breeding new rootstocks. Progeny of ‘M9’ segregate for rootstock-induced dwarfing of the scion, indicating that this trait is controlled by one or more genetic factors. A quantitative trait locus (QTL) analysis of a rootstock population derived from the cross between ‘M9’ × ‘Robusta5’ (non-dwarfing) and grafted with ‘Braeburn’ scions identified a major QTL (Dw1) on linkage group (LG) 5, which exhibits a significant influence on dwarfing of the scion. A smaller-effect QTL affecting dwarfing (Dw2) was identified on LG11, and four minor-effect QTLs were found on LG6, LG9, LG10 and LG12. Phenotypic analysis indicates that the combination of Dw1 and Dw2 has the strongest influence on rootstock-induced dwarfing, and that Dw1 has a stronger effect than Dw2. Genetic markers linked to Dw1 and Dw2 were screened over 41 rootstock accessions that confer a range of effects on scion growth. The majority of the dwarfing and semi-dwarfing rootstock accessions screened carried marker alleles linked to Dw1 and Dw2. This suggests that most apple dwarfing rootstocks have been derived from the same genetic source
    corecore