462 research outputs found
Bryozoans are Major Modern Builders of South Atlantic Oddly Shaped Reefs
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27961-6.In major modern reef regions, either in the Indo-Pacific or the Caribbean, scleractinian corals are
described as the main reef framework builders, often associated with crustose coralline algae. We
used underwater cores to investigate Late Holocene reef growth and characterise the main framework
builders in the Abrolhos Shelf, the largest and richest modern tropical reef complex in the South
Western Atlantic, a scientifically underexplored reef province. Rather than a typical coralgal reef,
our results show a complex framework building system dominated by bryozoans. Bryozoans were
major components in all cores and age intervals (2,000 yrs BP), accounting for up to 44% of the reef
framework, while crustose coralline algae and coral accounted for less than 28 and 23%, respectively.
Reef accretion rates varied from 2.7 to 0.9 mm yr−1, which are similar to typical coralgal reefs.
Bryozoan functional groups encompassed 20 taxa and Celleporaria atlantica (Busk, 1884) dominated
the framework at all cores. While the prevalent mesotrophic conditions may have driven suspensionfeeders’
dominance over photoautotrophs and mixotrophs, we propose that a combination of historical
factors with the low storm-disturbance regime of the tropical South Atlantic also contributed to the
region’s low diversity, and underlies the unique mushroom shape of the Abrolhos pinnacles.We thank CNPq/FAPES-Sisbiota/PELD, CAPES/IODP, CAPES/Ciências do Mar, and ANP/Brasoil for long
term project funding. We also thank ICMBio for research permits and field logistic support, and Conservation
International for providing and authorizing the use of the IKONOS image. JMW and JCB are International
Visiting Researcher at UFES and JBRJ, supported by the Science Without Borders program. Zá Cajueiro
provided invaluable field support and Ronaldo Francini, Carlos Janovitch and Lucio Engler helped in the drilling
operations. This is a contribution from the Rede Abrolhos (abrolhos.org)
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
Exceptionally Preserved Jellyfishes from the Middle Cambrian
Cnidarians represent an early diverging animal group and thus insight into their origin and diversification is key to understanding metazoan evolution. Further, cnidarian jellyfish comprise an important component of modern marine planktonic ecosystems. Here we report on exceptionally preserved cnidarian jellyfish fossils from the Middle Cambrian (∼505 million years old) Marjum Formation of Utah. These are the first described Cambrian jellyfish fossils to display exquisite preservation of soft part anatomy including detailed features of structures interpreted as trailing tentacles and subumbrellar and exumbrellar surfaces. If the interpretation of these preserved characters is correct, their presence is diagnostic of modern jellyfish taxa. These new discoveries may provide insight into the scope of cnidarian diversity shortly after the Cambrian radiation, and would reinforce the notion that important taxonomic components of the modern planktonic realm were in place by the Cambrian period
Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling
The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27Kip1 expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr308 and Ser473 in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer
Acute Regulation of Cardiac Metabolism by the Hexosamine Biosynthesis Pathway and Protein O-GlcNAcylation
OBJECTIVE: The hexosamine biosynthesis pathway (HBP) flux and protein O-linked N-acetyl-glucosamine (O-GlcNAc) levels have been implicated in mediating the adverse effects of diabetes in the cardiovascular system. Activation of these pathways with glucosamine has been shown to mimic some of the diabetes-induced functional and structural changes in the heart; however, the effect on cardiac metabolism is not known. Therefore, the primary goal of this study was to determine the effects of glucosamine on cardiac substrate utilization. METHODS: Isolated rat hearts were perfused with glucosamine (0-10 mM) to increase HBP flux under normoxic conditions. Metabolic fluxes were determined by (13)C-NMR isotopomer analysis; UDP-GlcNAc a precursor of O-GlcNAc synthesis was assessed by HPLC and immunoblot analysis was used to determine O-GlcNAc levels, phospho- and total levels of AMPK and ACC, and membrane levels of FAT/CD36. RESULTS: Glucosamine caused a dose dependent increase in both UDP-GlcNAc and O-GlcNAc levels, which was associated with a significant increase in palmitate oxidation with a concomitant decrease in lactate and pyruvate oxidation. There was no effect of glucosamine on AMPK or ACC phosphorylation; however, membrane levels of the fatty acid transport protein FAT/CD36 were increased and preliminary studies suggest that FAT/CD36 is a potential target for O-GlcNAcylation. CONCLUSION/INTERPRETATION: These data demonstrate that acute modulation of HBP and protein O-GlcNAcylation in the heart stimulates fatty acid oxidation, possibly by increasing plasma membrane levels of FAT/CD36, raising the intriguing possibility that the HBP and O-GlcNAc turnover represent a novel, glucose dependent mechanism for regulating cardiac metabolism
Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila
<p>Abstract</p> <p>Background</p> <p>In male <it>Drosophila melanogaster</it>, the male specific lethal (MSL) complex is somehow responsible for a two-fold increase in transcription of most X-linked genes, which are enriched for histone H4 acetylated at lysine 16 (H4K16ac). This acetylation requires MOF, a histone acetyltransferase that is a component of the MSL complex. MOF also associates with the non-specific lethal or NSL complex. The MSL complex is bound within active genes on the male X chromosome with a 3' bias. In contrast, the NSL complex is enriched at promoter regions of many autosomal and X-linked genes in both sexes. In this study we have investigated the role of MOF as a transcriptional activator.</p> <p>Results</p> <p>MOF was fused to the DNA binding domain of Gal4 and targeted to the promoter region of UAS-reporter genes in <it>Drosophila</it>. We found that expression of a UAS-red fluorescent protein (DsRed) reporter gene was strongly induced by Gal4-MOF. However, DsRed RNA levels were about seven times higher in female than male larvae. Immunostaining of polytene chromosomes showed that Gal4-MOF co-localized with MSL1 to many sites on the X chromosome in male but not female nuclei. However, in female nuclei that express MSL2, Gal4-MOF co-localized with MSL1 to many sites on polytene chromosomes but DsRed expression was reduced. Mutation of conserved active site residues in MOF (Glu714 and Cys680) reduced HAT activity <it>in vitro </it>and UAS-DsRed activation in <it>Drosophila</it>. In the presence of Gal4-MOF, H4K16ac levels were enriched over UAS-<it>lacZ </it>and UAS-<it>arm-lacZ </it>reporter genes. The latter utilizes the constitutive promoter from the <it>arm </it>gene to drive <it>lacZ </it>expression. In contrast to the strong induction of UAS-DsRed expression, UAS-<it>arm-lacZ </it>expression increased by about 2-fold in both sexes.</p> <p>Conclusions</p> <p>Targeting MOF to reporter genes led to transcription enhancement and acetylation of histone H4 at lysine 16. Histone acetyltransferase activity was required for the full transcriptional response. Incorporation of Gal4-MOF into the MSL complex in males led to a lower transcription enhancement of UAS-<it>DsRed </it>but not UAS-<it>arm-lacZ </it>genes. We discuss how association of Gal4-MOF with the MSL or NSL proteins could explain our results.</p
Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment
<p>Abstract</p> <p>Background</p> <p>Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45) is the main risk factor for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF) is a key mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours.</p> <p>Methods</p> <p>In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two genes observed by microarray was confirmed by Northern Blot. NF-κB activation was also determined by electrophoretic mobility shift assay (EMSA) using specific oligonucleotides and nuclear protein extracts.</p> <p>Results</p> <p>We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential expression could be associated with the differential response to TNF, such as: <it>KLK7 </it>(<it>kallikrein 7</it>), <it>SOD2 </it>(<it>superoxide dismutase 2</it>), <it>100P </it>(<it>S100 calcium binding protein P</it>), <it>PI3 </it>(<it>protease inhibitor 3, skin-derived</it>), <it>CSTA </it>(<it>cystatin A</it>), <it>RARRES1 </it>(<it>retinoic acid receptor responder 1</it>), and <it>LXN </it>(<it>latexin</it>). The differential expression of the <it>KLK7 </it>and <it>SOD2 </it>transcripts was confirmed by Northern blot. Moreover, we observed that <it>SOD2 </it>expression correlates with the differential NF-κB activation exhibited by TNF-sensitive and TNF-resistant cells.</p> <p>Conclusion</p> <p>This is the first in depth analysis of the differential effect of TNF on normal and HPV16 or HPV18 immortalized keratinocytes. Our findings may be useful for the identification of genes involved in TNF resistance acquisition and candidate genes which deregulated expression may be associated with cervical disease establishment and/or progression.</p
A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data
Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia.Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families.There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic "noise" contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia
Complex systems and the technology of variability analysis
Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients
Analysis of Interactions of Salmonella Type Three Secretion Mutants with 3-D Intestinal Epithelial Cells
The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms
- …