5 research outputs found
The consolidated European synthesis of CH₄ and N₂O emissions for the European Union and United Kingdom: 1990–2019
Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH₄ and N₂O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH₄ emissions, over the updated 2015–2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 Tg CH₄ yrc (EDGARv6.0, last year 2018) and 18.4 Tg CH₄ yr⁻¹ (GAINS, last year 2015), close to the NGHGI estimates of 17.5±2.1 Tg CH₄ yr⁻¹. TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 Tg CH₄ yr⁻¹. Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 Tg CH₄ yr⁻¹ inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH–HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 Tg CH₄ yr⁻¹. For N₂O emissions, over the 2015–2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 Tg N₂O yr⁻¹, close to the NGHGI data (0.8±55 % Tg N₂O yr⁻¹). Over the same period, the mean of TD global and regional inversions was 1.4 Tg N₂O yr⁻¹ (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH₄ and N₂O budgets at the national and EU27 + UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH₄ and N₂O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH₄ and N₂O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH₄, N₂O and other GHGs. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.7553800 (Petrescu et al., 2023)
Techno-economic analysis of bio-methane production from agriculture and food industry waste
© 2017 The Authors. Bio-methane production via anaerobic digestion is a promising technology for the decarbonization of the energy system. Bio-gas obtained from anaerobic digestion of farm and food industry waste is largely composed of 60% CH4 and 40% CO2. For injection of bio-methane into the gas distribution network it is necessary to remove CO2 from the biogas so that a richer CH4 stream is injected to satisfy gas network requirements. Chemical separation processes using solvents that react with CO2 or physically processes using adsorbents or membranes in which CO2 is retained are currently under investigation to reduce associated energy consumption whilst maximizing CO2 removal. In the case of sorbent based processes, research is mainly focused on the optimal design of pressure swing adsorption (PSA) cycles. In this work, a comparative techno-economic study of bio-gas upgrading for bio-methane production using solvent based processes and pressure swing adsorption cycles is presented. The results show that, pressure swing adsorption cycles exhibit 37% lower capital costs and 10% lower average life-time costs compared to solvent based technologies.Engineering and Physical Sciences Research Council Grant No. EP/M007359/1; RCUK Energy Programme Grant. No. EP/K011820/1