1,926 research outputs found
A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the
simplest and most widely-studied supersymmetric extensions to the standard
model of particle physics. Nevertheless, current data do not sufficiently
constrain the model parameters in a way completely independent of priors,
statistical measures and scanning techniques. We present a new technique for
scanning supersymmetric parameter spaces, optimised for frequentist profile
likelihood analyses and based on Genetic Algorithms. We apply this technique to
the CMSSM, taking into account existing collider and cosmological data in our
global fit. We compare our method to the MultiNest algorithm, an efficient
Bayesian technique, paying particular attention to the best-fit points and
implications for particle masses at the LHC and dark matter searches. Our
global best-fit point lies in the focus point region. We find many
high-likelihood points in both the stau co-annihilation and focus point
regions, including a previously neglected section of the co-annihilation region
at large m_0. We show that there are many high-likelihood points in the CMSSM
parameter space commonly missed by existing scanning techniques, especially at
high masses. This has a significant influence on the derived confidence regions
for parameters and observables, and can dramatically change the entire
statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to
Sec. 3.4.2 in response to referee's comments; accepted for publication in
JHE
The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning
Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy
Scalar and vector Slepian functions, spherical signal estimation and spectral analysis
It is a well-known fact that mathematical functions that are timelimited (or
spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the
finite precision of measurement and computation unavoidably bandlimits our
observation and modeling scientific data, and we often only have access to, or
are only interested in, a study area that is temporally or spatially bounded.
In the geosciences we may be interested in spectrally modeling a time series
defined only on a certain interval, or we may want to characterize a specific
geographical area observed using an effectively bandlimited measurement device.
It is clear that analyzing and representing scientific data of this kind will
be facilitated if a basis of functions can be found that are "spatiospectrally"
concentrated, i.e. "localized" in both domains at the same time. Here, we give
a theoretical overview of one particular approach to this "concentration"
problem, as originally proposed for time series by Slepian and coworkers, in
the 1960s. We show how this framework leads to practical algorithms and
statistically performant methods for the analysis of signals and their power
spectra in one and two dimensions, and, particularly for applications in the
geosciences, for scalar and vectorial signals defined on the surface of a unit
sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics,
edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be
published by Springer Verlag. This is a slightly modified but expanded
version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the
Handbook, when it was called: Slepian functions and their use in signal
estimation and spectral analysi
Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors
The phosphodiesterase type 5 (PDE-5) inhibitors are effective in treating erectile dysfunction (ED). ED and heart failure (HF) share similar risk factors, and commonly present together. This association has led to questions ranging from the safety and efficacy of PDE-5 inhibitors in HF patients to a possible role for this class of medication to treat HF patients with or without ED. In addition to endothelial dysfunction, there are causes of ED specific to patients with HF including low exercise tolerance, depression and HF medications. Before treating HF patients with PDE-5 inhibitors, patients should be assessed for their risk of a cardiac event during sexual activity. PDE-5 inhibitors are safe and effective in treating ED in HF patients. An improvement in erectile function by PDE-5 inhibitors was associated with an improvement in quality of life and reduction in depression. Several studies demonstrated the effect of PDE-5 inhibitors on HF per se. PDE-5 inhibitors improved endothelial dysfunction, increased exercise tolerance, decreased pulmonary vascular resistance and pulmonary artery pressure, and increased cardiac index. Several mechanisms whereby PDE-5 inhibitors improve HF have been proposed. PDE-5 inhibitors already have a role in treating primary pulmonary hypertension; however additional studies are needed to determine if they will become a standard therapy for HF patients
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
Exceptionally Preserved Jellyfishes from the Middle Cambrian
Cnidarians represent an early diverging animal group and thus insight into their origin and diversification is key to understanding metazoan evolution. Further, cnidarian jellyfish comprise an important component of modern marine planktonic ecosystems. Here we report on exceptionally preserved cnidarian jellyfish fossils from the Middle Cambrian (∼505 million years old) Marjum Formation of Utah. These are the first described Cambrian jellyfish fossils to display exquisite preservation of soft part anatomy including detailed features of structures interpreted as trailing tentacles and subumbrellar and exumbrellar surfaces. If the interpretation of these preserved characters is correct, their presence is diagnostic of modern jellyfish taxa. These new discoveries may provide insight into the scope of cnidarian diversity shortly after the Cambrian radiation, and would reinforce the notion that important taxonomic components of the modern planktonic realm were in place by the Cambrian period
Insulin Sensitivity Is Reflected by Characteristic Metabolic Fingerprints - A Fourier Transform Mass Spectrometric Non-Targeted Metabolomics Approach
BACKGROUND: A decline in body insulin sensitivity in apparently healthy individuals indicates a high risk to develop type 2 diabetes. Investigating the metabolic fingerprints of individuals with different whole body insulin sensitivity according to the formula of Matsuda, et al. (ISI(Matsuda)) by a non-targeted metabolomics approach we aimed a) to figure out an unsuspicious and altered metabolic pattern, b) to estimate a threshold related to these changes based on the ISI, and c) to identify the metabolic pathways responsible for the discrimination of the two patterns. METHODOLOGY AND PRINCIPAL FINDINGS: By applying infusion ion cyclotron resonance Fourier transform mass spectrometry, we analyzed plasma of 46 non-diabetic subjects exhibiting high to low insulin sensitivities. The orthogonal partial least square model revealed a cluster of 28 individuals with alterations in their metabolic fingerprints associated with a decline in insulin sensitivity. This group could be separated from 18 subjects with an unsuspicious metabolite pattern. The orthogonal signal correction score scatter plot suggests a threshold of an ISI(Matsuda) of 15 for the discrimination of these two groups. Of note, a potential subgroup represented by eight individuals (ISI(Matsuda) value between 8.5 and 15) was identified in different models. This subgroup may indicate a metabolic transition state, since it is already located within the cluster of individuals with declined insulin sensitivity but the metabolic fingerprints still show some similarities with unaffected individuals (ISI >15). Moreover, the highest number of metabolite intensity differences between unsuspicious and altered metabolic fingerprints was detected in lipid metabolic pathways (arachidonic acid metabolism, metabolism of essential fatty acids and biosynthesis of unsaturated fatty acids), steroid hormone biosyntheses and bile acid metabolism, based on data evaluation using the metabolic annotation interface MassTRIX. CONCLUSIONS: Our results suggest that altered metabolite patterns that reflect changes in insulin sensitivity respectively the ISI(Matsuda) are dominated by lipid-related pathways. Furthermore, a metabolic transition state reflected by heterogeneous metabolite fingerprints may precede severe alterations of metabolism. Our findings offer future prospects for novel insights in the pathogenesis of the pre-diabetic phase
Dormancy within Staphylococcus epidermidis biofilms : a transcriptomic analysis by RNA-seq
The proportion of dormant bacteria within Staphylococcus epidermidis biofilms may determine its inflammatory profile. Previously, we have shown that S. epidermidis biofilms with higher proportions of dormant bacteria have reduced activation of murine macrophages. RNA-sequencing was used to identify the major transcriptomic differences between S. epidermidis biofilms with different proportions of dormant bacteria. To accomplish this goal, we used an in vitro model where magnesium allowed modulation of the proportion of dormant bacteria within S. epidermidis biofilms. Significant differences were found in the expression of 147 genes. A detailed analysis of the results was performed based on direct and functional gene interactions. Biological processes among the differentially expressed genes were mainly related to oxidation-reduction processes and acetyl-CoA metabolic processes. Gene set enrichment revealed that the translation process is related to the proportion of dormant bacteria. Transcription of mRNAs involved in oxidation-reduction processes was associated with higher proportions of dormant bacteria within S. epidermidis biofilm. Moreover, the pH of the culture medium did not change after the addition of magnesium, and genes related to magnesium transport did not seem to impact entrance of bacterial cells into dormancy.The authors thank Stephen Lorry at Harvard Medical School for providing CLC Genomics software. This work was funded by Fundacao para a Ciencia e a Tecnologia (FCT) and COMPETE grants PTDC/BIA-MIC/113450/2009, FCOMP-01-0124-FEDER-014309, FCOMP-01-0124-FEDER-022718 (FCT PEst-C/SAU/LA0002/2011), QOPNA research unit (project PEst-C/QUI/UI0062/2011), and CENTRO-07-ST24-FEDER-002034. The following authors had an individual FCT fellowship: VC (SFRH/BD/78235/2011) and AF (2SFRH/BD/62359/2009)
Dopamine and inhibitory action control: evidence from spontaneous eye blink rates
The inhibitory control of actions has been claimed to rely on dopaminergic pathways. Given that this hypothesis is mainly based on patient and drug studies, some authors have questioned its validity and suggested that beneficial effects of dopaminergic stimulants on response inhibition may be limited to cases of suboptimal inhibitory functioning. We present evidence that, in carefully selected healthy adults, spontaneous eyeblink rate, a marker of central dopaminergic functioning, reliably predicts the efficiency in inhibiting unwanted action tendencies in a stop-signal task. These findings support the assumption of a modulatory role for dopamine in inhibitory action control
- …