137 research outputs found

    Improvement of Aroma in Transgenic Potato As a Consequence of Impairing Tuber Browning

    Get PDF
    Sensory analysis studies are critical in the development of quality enhanced crops, and may be an important component in the public acceptance of genetically modified foods. It has recently been established that odor preferences are shared between humans and mice, suggesting that odor exploration behavior in mice may be used to predict the effect of odors in humans. We have previously found that mice fed diets supplemented with engineered nonbrowning potatoes (-PPO) consumed more potato than mice fed diets supplemented with wild-type potatoes (WT). This prompted us to explore a possible role of potato odor in mice preference for nonbrowning potatoes. Taking advantage of two well established neuroscience paradigms, the “open field test” and the “nose-poking preference test”, we performed experiments where mice exploration behavior was monitored in preference assays on the basis of olfaction alone. No obvious preference was observed towards -PPO or WT lines when fresh potato samples were tested. However, when oxidized samples were tested, mice consistently investigated -PPO potatoes more times and for longer periods than WT potatoes. Congruently, humans discriminated WT from -PPO samples with a considerably better performance when oxidized samples were tested than when fresh samples were tested in blind olfactory experiments. Notably, even though participants ranked all samples with an intermediate level of pleasantness, there was a general consensus that the -PPO samples had a more intense odor and also evoked the sense-impression of a familiar vegetable more often than the WT samples. Taken together, these findings suggest that our previous observations might be influenced, at least in part, by differential odors that are accentuated among the lines once oxidative deterioration takes place. Additionally, our results suggest that nonbrowning potatoes, in addition to their extended shelf life, maintain their odor quality for longer periods of time than WT potatoes. To our knowledge this is the first report on the use of an animal model applied to the sensory analysis of a transgenic crop

    Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers

    Get PDF
    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction

    Safety out of control: dopamine and defence

    Full text link

    Place Conditioning: What Does It Add to Our Understanding of Ethanol Reward ?

    Get PDF
    This article describes the proceedings of a symposium at the 2001 RSA annual meeting in Montreal, Quebec, Canada. The cochairs were Fred O. Risinger and Christopher L. Cunningham. Presentations were as follows: (1) Place conditioning: understanding the motivational impact of stimuli, by Rick A. Bevins; (2) Role of historical factors in ethanol place conditioning, by Frank A. Holloway; (3) Ethanol place conditioning in mice: genetic and environmental infl uences, by Christopher L. Cunningham; and (4) Utilization of place conditioning for understanding the neuropharmacology of the rewarding effects of ethanol, by Fred O. Risinger

    Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance

    No full text
    Lateral habenula (LHb) projections to the ventral midbrain, including the rostromedial tegmental nucleus (RMTg) conveys negative reward-related information, but the behavioral ramifications of selective activation of this pathway remain unexplored. We found that exposure to aversive stimuli in mice increased LHb excitatory drive onto RMTg neurons. Further, optogenetic activation of this pathway promoted active, passive, and conditioned behavioral avoidance. These data demonstrate that activity of LHb efferents to the midbrain is aversive, but can also serve to negatively reinforce behavioral responding

    Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit Disorder

    No full text

    Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic spinal cord injury <b>(</b>SCI) leads to serious neurological and functional deficits through a chain of pathophysiological events. At the molecular level, progressive damage is initially revealed by collapse of plasma membrane organization and integrity produced by breaches. Consequently, the loss of its role as a semi-permeable barrier that generally mediates the regulation and transport of ions and molecules eventually results in cell death. In previous studies, we have demonstrated the functional recovery of compromised plasma membranes can be induced by the application of the hydrophilic polymer polyethylene glycol (PEG) after both spinal and brain trauma in adult rats and guinea pigs. Additionally, efforts have been directed towards a nanoparticle-based PEG application.</p> <p>The <it>in vivo</it> and <it>ex vivo</it> applications of PEG-decorated silica nanoparticles following CNS injury were able to effectively and efficiently enhance resealing of damaged cell membranes.</p> <p>Results</p> <p>The possibility for selectivity of tetramethyl rhodamine-dextran (TMR) dye-doped, PEG-functionalized silica nanoparticles (TMR-PSiNPs) to damaged spinal cord was evaluated using an ex vivo model of guinea pig SCI. Crushed and nearby undamaged spinal cord tissues exhibited an obvious difference in both the imbibement and accumulation of the TMR-PSiNPs, revealing selective labeling of compression-injured tissues.</p> <p>Conclusions</p> <p>These data show that appropriately functionalized nanoparticles can be an efficient means to both 1.) carry drugs, and 2.) apply membrane repair agents where they are needed in focally damaged nervous tissue.</p
    corecore