19 research outputs found

    Evidence for a Two-Metal-Ion Mechanism in the Cytidyltransferase KdsB, an Enzyme Involved in Lipopolysaccharide Biosynthesis

    Get PDF
    Lipopolysaccharide (LPS) is located on the surface of Gram-negative bacteria and is responsible for maintaining outer membrane stability, which is a prerequisite for cell survival. Furthermore, it represents an important barrier against hostile environmental factors such as antimicrobial peptides and the complement cascade during Gram-negative infections. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an integral part of LPS and plays a key role in LPS functionality. Prior to its incorporation into the LPS molecule, Kdo has to be activated by the CMP-Kdo synthetase (CKS). Based on the presence of a single Mg2+ ion in the active site, detailed models of the reaction mechanism of CKS have been developed previously. Recently, a two-metal-ion hypothesis suggested the involvement of two Mg2+ ions in Kdo activation. To further investigate the mechanistic aspects of Kdo activation, we kinetically characterized the CKS from the hyperthermophilic organism Aquifex aeolicus. In addition, we determined the crystal structure of this enzyme at a resolution of 2.10 Γ… and provide evidence that two Mg2+ ions are part of the active site of the enzyme

    Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications

    Get PDF
    OBJECTIVE: To identify possible avenues of sparing the internal mammary artery (IMA) for coronary artery bypass grafting (CABG) in women undergoing autologous breast reconstruction with deep inferior epigastric artery perforator (DIEP) flaps. BACKGROUND: Optimal autologous reconstruction of the breast and coronary artery bypass grafting (CABG) are often mutually exclusive as they both require utilisation of the IMA as the preferred arterial conduit. Given the prevalence of both breast cancer and coronary artery disease, this is an important issue for women's health as women with DIEP flap reconstructions and women at increased risk of developing coronary artery disease are potentially restricted from receiving this reconstructive option should the other condition arise. METHODS: The largest clinical and cadaveric anatomical study (n=315) to date was performed, investigating four solutions to this predicament by correlating the precise requirements of breast reconstruction and CABG against the anatomical features of the in situ IMAs. This information was supplemented by a thorough literature review. RESULTS: Minimum lengths of the left and right IMA needed for grafting to the left-anterior descending artery are 160.08 and 177.80 mm, respectively. Based on anatomical findings, the suitable options for anastomosis to each intercostals space are offered. In addition, 87-91% of patients have IMA perforator vessels to which DIEP flaps can be anastomosed in the first- and second-intercostal spaces. CONCLUSION: We outline five methods of preserving the IMA for future CABG: (1) lowering the level of DIEP flaps to the fourth- and fifth-intercostals spaces, (2) using the DIEP pedicle as an intermediary for CABG, (3) using IMA perforators to spare the IMA proper, (4) using and end-to-side anastomosis between the DIEP pedicle and IMA and (5) anastomosis of DIEP flaps using retrograde flow from the distal IMA. With careful patient selection, we hypothesize using the IMA for autologous breast reconstruction need not be an absolute contraindication for future CABG

    Multisubstrate adduct inhibitors: Drug design and biological tools

    No full text

    Observing the Evolution of the Universe

    No full text
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages
    corecore