63 research outputs found

    The Efficacy of Auditory Perceptual Training for Tinnitus: A Systematic Review

    Get PDF
    Auditory perceptual training affects neural plasticity and so represents a potential strategy for tinnitus management. We assessed the effects of auditory perceptual training on tinnitus perception and/or its intrusiveness via a systematic review of published literature. An electronic database search using the keywords ‘tinnitus and learning’ or ‘tinnitus and training’ was conducted, updated by a hand search. The ten studies identified were reviewed independently by two reviewers, data were extracted, study quality was assessed according to a number of specific criteria and the information was synthesised using a narrative approach. Nine out of the ten studies reported some significant change in either self-reported or psychoacoustic outcome measures after auditory training. However, all studies were quality rated as providing low or moderate levels of evidence for an effect. We identify a need for appropriately randomised and controlled studies that will generate high-quality unbiased and generalisable evidence to ascertain whether or not auditory perceptual training has a clinically relevant effect on tinnitus

    Multiscale Systems, Homogenization, and Rough Paths:VAR75 2016: Probability and Analysis in Interacting Physical Systems

    Get PDF
    In recent years, substantial progress was made towards understanding convergence of fast-slow deterministic systems to stochastic differential equations. In contrast to more classical approaches, the assumptions on the fast flow are very mild. We survey the origins of this theory and then revisit and improve the analysis of Kelly-Melbourne [Ann. Probab. Volume 44, Number 1 (2016), 479-520], taking into account recent progress in pp-variation and c\`adl\`ag rough path theory.Comment: 27 pages. Minor corrections. To appear in Proceedings of the Conference in Honor of the 75th Birthday of S.R.S. Varadha

    Altered networks in bothersome tinnitus: a functional connectivity study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to examine functional connectivity linked to the auditory system in patients with bothersome tinnitus. Activity was low frequency (< 0.1 Hz), spontaneous blood oxygenation level-dependent (BOLD) responses at rest. The question was whether the experience of chronic bothersome tinnitus induced changes in synaptic efficacy between co-activated components. Functional connectivity for seed regions in auditory, visual, attention, and control networks was computed across all 2 mm<sup>3 </sup>brain volumes in 17 patients with moderate-severe bothersome tinnitus (<it>Tinnitus Handicap Index: average </it>53.5 ± 3.6 (range 38-76)) and 17 age-matched controls.</p> <p>Results</p> <p>In bothersome tinnitus, negative correlations reciprocally characterized functional connectivity between auditory and occipital/visual cortex. Negative correlations indicate that when BOLD response magnitudes increased in auditory or visual cortex they decreased in the linked visual or auditory cortex, suggesting reciprocally phase reversed activity between functionally connected locations in tinnitus. Both groups showed similar connectivity with positive correlations within the auditory network. Connectivity for primary visual cortex in tinnitus included extensive negative correlations in the ventral attention temporoparietal junction and in the inferior frontal gyrus and rostral insula - executive control network components. Rostral insula and inferior frontal gyrus connectivity in tinnitus also showed greater negative correlations in occipital cortex.</p> <p>Conclusions</p> <p>These results imply that in bothersome tinnitus there is dissociation between activity in auditory cortex and visual, attention and control networks. The reciprocal negative correlations in connectivity between these networks might be maladaptive or reflect adaptations to reduce phantom noise salience and conflict with attention to non-auditory tasks.</p

    Antitumor activity of a small-molecule inhibitor of the histone kinase Haspin

    Get PDF
    The approval of histone deacetylase inhibitors for treatment of lymphoma subtypes has positioned histone modifications as potential targets for the development of new classes of anticancer drugs. Histones also undergo phosphorylation events, and Haspin is a protein kinase the only known target of which is phosphorylation of histone H3 at Thr3 residue (H3T3ph), which is necessary for mitosis progression. Mitotic kinases can be blocked by small drugs and several clinical trials are underway with these agents. As occurs with Aurora kinase inhibitors, Haspin might be an optimal candidate for the pharmacological development of these compounds. A high-throughput screening for Haspin inhibitors identified the CHR-6494 compound as being one promising such agent. We demonstrate that CHR-6494 reduces H3T3ph levels in a dose-dependent manner and causes a mitotic catastrophe characterized by metaphase misalignment, spindle abnormalities and centrosome amplification. From the cellular standpoint, the identified small-molecule Haspin inhibitor causes arrest in G2/M and subsequently apoptosis. Importantly, ex vivo assays also demonstrate its anti-angiogenetic features; in vivo, it shows antitumor potential in xenografted nude mice without any observed toxicity. Thus, CHR-6494 is a first-in-class Haspin inhibitor with a wide spectrum of anticancer effects that merits further preclinical research as a new member of the family of mitotic kinase inhibitors

    Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges

    Full text link

    Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration

    Get PDF

    RIPK1

    No full text

    Design of pyrido[2,3-d]pyrimidin-7-one inhibitors of receptor interacting protein kinase-2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling

    No full text
    Receptor interacting protein kinase-2 (RIPK2) is an enzyme involved in the transduction of pro-inflammatory nucleotide-binding oligomerization domain (NOD) cell signaling, a pathway implicated in numerous chronic inflammatory conditions. Herein, a pyrido[2,3-d]pyrimidin-7-one based class of RIPK2 kinase and NOD2 cell signaling inhibitors is described. For example, 33 (e.g. UH15–15) inhibited RIPK2 kinase (IC50 = 8 ± 4 nM) and displayed > 300-fold selectivity versus structurally related activin receptor-like kinase 2 (ALK2). This molecule blocked NOD2-dependent HEKBlue NF-κB activation (IC50 = 20 ± 5 nM) and CXCL8 production (at concentrations > 10 nM). Molecular docking suggests that engagement of Ser25 in the glycine-rich loop may provide increased selectivity versus ALK2 and optimal occupancy of the region between the gatekeeper and the αC-helix may contribute to potent NOD2 cell signaling inhibition. Finally, this compound also demonstrated favorable in vitro ADME and pharmacokinetic properties (e.g. Cmax = 5.7 μM, Tmax = 15 min, t1/2 = 3.4 h and Cl = 45 mL/min/kg following single 10 mg/kg intraperitoneal administration) further supporting the use of pyrido[2,3-d]pyrimidin-7-ones as a new structure class of RIPK2 kinase and NOD cell signaling inhibitors
    corecore