17 research outputs found

    Dynamic regulation of airway surface liquid pH by TMEM16A and SLC26A4 in cystic fibrosis nasal epithelia with rare mutations

    Get PDF
    Copyright \ua9 2023 the Author(s). Published by PNAS. In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR

    Ciliated Epithelial Cell Differentiation at Air-Liquid Interface Using Commercially Available Culture Media

    Get PDF
    The human nasal epithelium contains basal stem/progenitor cells that produce differentiated multiciliated and mucosecretory progeny. Basal epithelial cells can be expanded in cell culture and instructed to differentiate at an air-liquid interface using transwell membranes and differentiation media. For basal cell expansion, we have used 3T3-J2 co-culture in epithelial culture medium containing EGF, insulin, and a RHO-associated protein kinase (ROCK) inhibitor, Y-27632 (3T3 + Y). Here we describe our protocols for ciliated differentiation of these cultures at air-liquid interface and compare four commercially available differentiation media, across nine donor cell cultures (six healthy, two patients with chronic obstructive pulmonary disease (COPD), and one with primary ciliary dyskinesia (PCD)). Bright-field and immunofluorescence imaging suggested broad similarity between differentiation protocols. Subtle differences were seen in transepithelial electrical resistance (TEER), ciliary beat frequency, mucus production, and the extent to which basal cells are retained in differentiated cultures. Overall, the specific differentiation medium used in our air-liquid interface culture protocol was not a major determinant of ciliation, and our data suggest that the differentiation potential of basal cells at the outset is a more critical factor in air-liquid interface culture outcome. Detailed information on the constituents of the differentiation media was only available from one of the four manufacturers, a factor that may have profound implications in the interpretation of some research studies

    TNF-α and IL-1β-activated human mesenchymal stromal cells increase airway epithelial wound healing in vitro via activation of the epidermal growth factor receptor

    No full text
    BACKGROUND: Mesenchymal stromal cells (MSCs) are investigated for their potential to reduce inflammation and to repair damaged tissue. Inflammation and tissue damage are hallmarks of chronic obstructive pulmonary disease (COPD) and MSC infusion is a promising new treatment for COPD. Inflammatory mediators attract MSCs to sites of inflammation and affect their immune-modulatory properties, but little is known about their effect on regenerative properties of MSCs. This study investigates the effect of the pro-inflammatory cytokines TNF-α and IL-1β on the regenerative potential of MSCs, using an in vitro wound healing model of airway epithelial cells. METHODS: Standardized circular wounds were created by scraping cultures of the airway epithelial cell line NCI-H292 and primary bronchial epithelial cells cultured at the air-liquid interface (ALI-PBEC), and subsequently incubated with MSC conditioned medium (MSC-CM) that was generated in presence or absence of TNF-α/IL-1β. Remaining wound size was measured up to 72 h. Phosphorylation of ERK1/2 by MSC-CM was assessed using Western blot. Inhibitors for EGFR and c-Met signaling were used to investigate the contribution of these receptors to wound closure and to ERK1/2 phosphorylation. Transactivation of EGFR by MSC-CM was investigated using a TACE inhibitor, and RT-PCR was used to quantify mRNA expression of several growth factors in MSCs and NCI-H292. RESULTS: Stimulation of MSCs with the pro-inflammatory cytokines TNF-α and IL-1β increased the mRNA expression of various growth factors by MCSs and enhanced the regenerative potential of MSCs in an in vitro model of airway epithelial injury using NCI-H292 airway epithelial cells. Conditioned medium from cytokine stimulated MSCs induced ERK1/2 phosphorylation in NCI-H292, predominantly via EGFR; it induced ADAM-mediated transactivation of EGFR, and it induced airway epithelial expression of several EGFR ligands. The contribution of activation of c-Met via HGF to increased repair could not be confirmed by inhibitor experiments. CONCLUSION: Our data imply that at sites of tissue damage, when inflammatory mediators are present, for example in lungs of COPD patients, MSCs become more potent inducers of repair, in addition to their well-known immune-modulatory properties
    corecore