18 research outputs found

    Harvesting of microalgae by bio-flocculation

    Get PDF
    The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the non-flocculating microalga of interest. Three flocculating microalgae, tested for harvesting of microalgae from different habitats, improved the sedimentation rate of the accompanying microalga and increased the recovery of biomass. The advantages of this method are that no addition of chemical flocculants is required and that similar cultivation conditions can be used for the flocculating microalgae as for the microalgae of interest that accumulate lipids. This method is as easy and effective as chemical flocculation which is applied at industrial scale, however in contrast it is sustainable and cost-effective as no costs are involved for pre-treatment of the biomass for oil extraction and for pre-treatment of the medium before it can be re-used

    On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor

    Get PDF
    Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4+, NO2−, or NO3− was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4+ as the nitrogen source and 1.3 when NO3− was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified

    Microalgae as second generation biofuel. A review

    Full text link

    In vitro cytotoxic activity of microalgal extracts loaded nano–micro particles produced via electrospraying and microemulsion methods

    No full text
    Reactive oxygen species can bind protein, DNA, lipids, and carbohydrates and thus cause an oxidation reaction that induces various syndromes such as cardiovascular diseases, degenerative disease, and cancer types in the human body. Bioactive compounds, such as PUFA, EPA, DHA, and carotenoids in algae, have a chain ring and protect the tissue from chemical damage and reverse the symptoms of some diseases. Algal bioactives also have various biological properties such as anticoagulants, antiviral, antiangiogenic, antitumor, anti-inflammatory, antioxidant, antiproliferative, and immune modulation properties. This study aimed to show in vitro cytotoxic activity effect of Chlorella protothecoides and Nannochloropsis oculata microalgal extracts loaded nano-microparticles on A-172 (Homo sapiens brain glioblastoma) and HCT-116 (H. sapiens colon colorectal carcinoma) cell lines because of the increasing importance of algal biotechnology. MTT viability tests were performed on HUVEC, A172, and HCT 116 cells with particles obtained at optimum process parameters. The cell viability rates of encapsulated particles were also compared with pure algae extracts. Microalgal extracts loaded nano-micro particles showed very promising results for cytotoxic effect on cancer cells
    corecore