32 research outputs found

    Three-Dimensional Neurophenotyping of Adult Zebrafish Behavior

    Get PDF
    The use of adult zebrafish (Danio rerio) in neurobehavioral research is rapidly expanding. The present large-scale study applied the newest video-tracking and data-mining technologies to further examine zebrafish anxiety-like phenotypes. Here, we generated temporal and spatial three-dimensional (3D) reconstructions of zebrafish locomotion, globally assessed behavioral profiles evoked by several anxiogenic and anxiolytic manipulations, mapped individual endpoints to 3D reconstructions, and performed cluster analysis to reconfirm behavioral correlates of high- and low-anxiety states. The application of 3D swim path reconstructions consolidates behavioral data (while increasing data density) and provides a novel way to examine and represent zebrafish behavior. It also enables rapid optimization of video tracking settings to improve quantification of automated parameters, and suggests that spatiotemporal organization of zebrafish swimming activity can be affected by various experimental manipulations in a manner predicted by their anxiolytic or anxiogenic nature. Our approach markedly enhances the power of zebrafish behavioral analyses, providing innovative framework for high-throughput 3D phenotyping of adult zebrafish behavior

    Palaeoecology of Late Ladinian (Middle Triassic) benthic faunas from the Schlern/Sciliar and Seiser Alm/Alpe di Siusi area (South Tyrol, Italy)

    No full text

    Long-distance migratory birds threatened by multiple independent risks from global change

    Get PDF
    Many species migrate long distances annually between their breeding and wintering areas1. Although global change affects both ranges, impact assessments have generally focused on breeding ranges and ignored how environmental changes influence migrants across geographical regions and the annual cycle2,3. Using range maps and species distribution models, we quantified the risk of summer and winter range loss and migration distance increase from future climate and land cover changes on long-distance migratory birds of the Holarctic (n = 715). Risk estimates are largely independent of each other and magnitudes vary geographically. If seasonal range losses and increased migration distances are not considered, we strongly underestimate the number of threatened species by 18–49% and the overall magnitude of risk for 17–50% species. Many of the analysed species that face multiple global change risks are not listed by International Union for Conservation of Nature as threatened or near threatened. To neglect seasonal migration in impact assessments could thus seriously misguide species’ conservation
    corecore