24 research outputs found

    Diffuse glioma growth: a guerilla war

    Get PDF
    In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent “supply lines” for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted (“search & destroy”) tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies

    Influence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles

    No full text
    Christine Rangger,1 Anna Helbok,1 Elisabeth von Guggenberg,1 Jane Sosabowski,2 Thorsten Radolf,3 Ruth Prassl,4 Fritz Andreae,3 Gudrun C Thurner,5 Roland Haubner,1 Clemens Decristoforo11Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria; 2Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; 3piCHEM Research and Development, Graz, 4Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, 5Department of Radiology, Innsbruck Medical University, Innsbruck, AustriaPurpose: Liposomes have been proposed to be a means of selectively targeting cancer sites for diagnostic and therapeutic applications. The focus of this work was the evaluation of radiolabeled PEGylated liposomes derivatized with varying amounts of a cyclic arginyl–glycyl–aspartic acid (RGD) peptide. RGD peptides are known to bind to αvβ3 integrin receptors overexpressed during tumor-induced angiogenesis.Methods: Several liposomal nanoparticles carrying the RGD peptide targeting sequence (RLPs) were synthesized using a combination of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, cholesterol, diethylenetriaminepentaacetic acid-derivatized lipids for radiolabeling, a polyethylene glycol (PEG) building block, and a lipid-based RGD building block. Relative amounts of RGD and PEG building blocks were varied. In vitro binding affinities were determined using isolated αvβ3 integrin receptors incubated with different concentrations of RLPs in competition with iodine-125-labeled cyclo-(-RGDyV-). Binding of the indium-111-labeled RLPs was also evaluated. Biodistribution and micro single photon emission computed tomography/computed tomography imaging studies were performed in nude mice using different tumor xenograft models.Results: RLPs were labeled with indium-111 with high radiochemical yields. In vitro binding studies of RLPs with different RGD/PEG loading revealed good binding to isolated receptors, which was dependent on the extent of RGD and PEG loading. Binding increased with higher RGD loading, whereas reduced binding was found with higher PEG loading. Biodistribution showed increased circulating time for PEGylated RLPs, but no dependence on RGD loading. Both biodistribution and micro single photon emission computed tomography/computed tomography imaging studies revealed low, nonspecific tumor uptake values.Conclusion: In this study, RLPs for targeting angiogenesis were described. Even though good binding to αvβ3 integrin receptors was found in vitro, the balance between PEGylation and RGD loading clearly requires optimization to achieve targeting in vivo. These data form the basis for future development and provide a platform for the investigation of multimodal approaches.Keywords: liposomes, RGD peptides, αvβ3 integrin receptors, angiogenesis, tumor targetin

    Wound healing after radiation therapy: Review of the literature

    Get PDF
    Radiation therapy is an established modality in the treatment of head and neck cancer patients. Compromised wound healing in irradiated tissues is a common and challenging clinical problem. The pathophysiology and underlying cellular mechanisms including the complex interaction of cytokines and growth factors are still not understood completely. In this review, the current state of research regarding the pathomechanisms of compromised wound healing in irradiated tissues is presented. Current and possible future treatment strategies are critically reviewed

    Micro-PET Imaging of α v

    No full text
    The α v integrins, which act as cell adhesion molecules, are closely involved with tumor invasion and angiogenesis. In particular, α v β 3 integrin, which is specifically expressed on proliferating endothelial cells and tumor cells, is a logical target for development of a radiotracer method to assess angiogenesis and anti-angiogenic therapy. In this study, a dimeric cyclic RGD peptide E[c(RGDyK)] 2 was labeled with 18 F ( t 1 /2 = 109.7 min) by using a prosthetic 4-[ 18 F]fluorobenzoyl moiety to the amino group of the glutamate. The resulting [ 18 F]FB-E[c(RGDyK)] 2 , with high specific activity (200–250 GBq/μmol at the end of synthesis), was administered to subcutaneous U87MG glioblastoma xenograft models for micro-PET and autoradiographic imaging as well as direct tissue sampling to assess tumor targeting efficacy and in vivo kinetics of this PET tracer. The dimeric RGD peptide demonstrated significantly higher tumor uptake and prolonged tumor retention in comparison with a monomeric RGD peptide analog [ 18 F]FB-c(RGDyK). The dimeric RGD peptide had predominant renal excretion, whereas the monomeric analog was excreted primarily through the biliary route. Micro-PET imaging 1 hr after injection of the dimeric RGD peptide exhibited tumor to contralateral background ratio of 9.5 ± 0.8. The synergistic effect of polyvalency and improved pharmacokinetics may be responsible for the superior imaging characteristics of [ 18 F]FB-E[c(RGDyK)] 2

    Wound monitoring of pH and oxygen in patients after radiation therapy

    Get PDF
    Objectives Postradiogenic wound healing disorders are an important clinical problem. While a variety of treatment modalities are available, there is no strategy to objectively judge treatment success. The aim of this study was to evaluate a 2D luminescence imaging system for pH and oxygen in non-healing wounds after radiotherapy. Methods Luminescence 2D imaging was performed with the VisiSens (Presens, Regensburg, Germany) 2D imaging systems A1 and A2 for oxygen and pH, respectively. Biocompatible planar luminescent sensor foils were applied to non-irradiated and irradiated skin as well as to radiogenic wounds of five patients and the pH and the oxygen saturation was determined. Results pH measurements showed significant differences between non-irradiated skin (6.46 +/- 0.18) and irradiated skin (6.96 +/- 0.26). Radiogenic wounds exhibited the highest pH values (7.53 +/- 0.26). Oxygen measurements revealed a mean oxygen saturation of non-irradiated skin of 6.19 +/- 0.83 mmHg. The highest value of oxygen saturation (28.4 +/- 2.4 mmHg) was found on irradiated skin while irradiated wounds had a poor oxygen saturation (9.4 +/- 2.2 mmHg) (mean +/- s.e.m.). Conclusion We found that routine measurement of pH and pO2 in patients could be easily integrated into the clinical routine. The results of the measurements show unfavorable pH and oxygen saturation conditions for wound healing in irradiated wounds. Interestingly, irradiated wounds exhibit a more pronounced hypoxia than irradiated skin which is reflected by an altered pH and pO2 compared to unirradiated skin, which has the potential to serve as a prognostic marker in the future. In addition to the objectification of the treatment success of postradiogenic wound healing disorders, the extent of skin toxicity could already be predicted during radiotherapy with this method
    corecore